摘要
本文研究可能行无限有向图的C*-代数.对于一个可能行无限的有向图E,通过引进集合s(μν),将行无限点上的算子拓扑强收敛关系代数化表示出来,并由此构造了一个结构丰富的非零*-代数HE,进而利用HE证明了一个由Cuntz-Krieger E-族{se,pv}生成的泛C*-代数C*(E)的存在性,并且证明了HE和C*(E)在图同构意义下不依赖于E的选择,从而是可能行无限有向图的同构不变量.
This paper is about the C~*-algebras of possibly row-infinite directed graphs.
For a possibly row-infinite directed graph E, we introduce the set s(μ,ν), by which
the strong operator topology on the row-infinite vertices is algebraically represented.
Moreover, a *-algebra H_E with rich structure is constructed, by which the existence of
the universal C~*-algebra generated by Cuntz-Krieger E-family {s_e, p_ν} is proved. We
also proved that the H_E and C~*(E) are the isomorphism invariants of E.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第4期687-694,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10271090)