摘要
本文运用覆盖曲面,克服了代数体函数多值性及分支点的困难,建立了一个代数体函数的正规定理,并证明了:对分支点分担的代数体函数族,若族中每个函数都不取互异的三个复数,则此函数族正规。
In this paper, a new normal criterion of algebroidal function is proposed
by applying the main theorems on covering surface, which overcomes some difficulties
caused by the multivaluedness and bifurcation points. We continue to prove the fol-
lowing result: For those algebroidal function families where the bifurcation points are
shared, the function family is normal, if every function in these families is not equal to
three different values.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第4期731-734,共4页
Acta Mathematica Sinica:Chinese Series
基金
湖北省教育厅科学研究重点项目(2003A001)
关键词
代数体函数
覆盖曲面
正规定理
Algebroidal function
Covering surfaces
Normal theorem