期刊文献+

遗传C*-子代数与可补闭子模的关系定理

The Relation Theorem of Hereditary C~*-Subalgebras and Complemented Submodules
原文传递
导出
摘要 设E是Hilbert C*-模,证明了E的每个闭子模均可补的充要条件是K(E)的每个非零遗传C*-子代数B,均有形式B=pK(E)p,其中P为L(E)中投影元. Let E be a Hilbert C~*-module. We prove that each closed submodule of E is a complemented submodule if and only if each non-zero hereditary C~*-subalgebra B of K(E) has the form B = pK(E)p, where p is a projection in L(E).
作者 张伦传
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第4期747-750,共4页 Acta Mathematica Sinica:Chinese Series
关键词 HILBERT C*-模映射 遗传C*-子代数 可补闭子模 Hilbert C~*-modules Hereditary C~*-subalgebras Complemented closed submodules
  • 相关文献

参考文献5

  • 1Lin H., Injective Hilbert C*-modules, Pacific J. of Math., 1992, 154(1): 131-164.
  • 2Lance E. C., Hilbert C*-modules, London: Cambridge University Press, 1995.
  • 3Magajna B., Hilbert C*-modules in which all closed submodules are complemented, Proceedings of AMS.,1997, 125(3): 849-852.
  • 4Paschke W. E., Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 1973, 182: 443-468.
  • 5Zhang L. C., Abstracts of short communications and poster sessions, 9 Operator Algebras and Functional Analysis, ICM 2002, Beijing: Higher Education Press, 2002, 164.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部