期刊文献+

含非对称临界非线性项的p-Laplace方程的多解问题 被引量:1

On Multiple Solutions of p-Laplacian Equation with Non-Symmetric Critical Nonlinearity
原文传递
导出
摘要 本文考虑含非奇对称临界非线性项的p-Laplace方程Dirichlet问题。运用改进的集中列紧原理证明了在某些指数条件下非奇对称的临界非线性项仍能保证无穷多弱解的存在性。 In this paper, a class of Dirichlet boundary problem of p-Laplacian operators is studied. The problem involves non-odd symmetric critical nonlinearity. Existence of infinitely many solutions of this problem is obtained with improved Compactness- Concentration principle.
作者 耿堤
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第4期751-762,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10371045) 广东省自然科学基金(000671)
关键词 P-LAPLACE方程 集中列紧原理 临界指标 p-Laplacian problems Concentration compactness principle Critical exponents
  • 相关文献

参考文献9

  • 1Ambrosetti A., Azorero J. G., Peral I., Multiplicity results for some nonlinear elliptic equations, J. Func.Anal., 1996, 137: 219-242.
  • 2Bartsch M., Critical point theory on partially ordered Hilbert spaces, J. Func. Anal., 2001, 186: 117-152.
  • 3Clapp M., Critical point theory for perturbations of symmetric functional, Comment. Math. Helvetici, 1996,71: 570-593.
  • 4Rabinowitz P. H., Multiple critical points of perturbed symmetric functionals, Trans Amer. Math. Soc., 1982,272(2): 753-767.
  • 5Struwe M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manusc. Math., 1980, 32: 335-364.
  • 6Dong G. C., Li S. J., Existence of infinitely many solutions for a Dirichlet problem of nonlinear elliptic equation, Sino Science, 1982, A: 132-138.
  • 7Azorero J. G., Alonso I. P., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Tran. Amer. Math. Soc, 1991, 323: 877-895.
  • 8Lions P. L., The concentration-compactness principle in the calculus of variations. The limit case, part 1, 2,Rev. Mat. Iberoamericana, 1985 1: 145-201, 2: 45-121.
  • 9Billingsley P., Convergence of probability measures, John Wiley & Sons, Inc., 1968.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部