期刊文献+

遥感信息不确定性研究 被引量:13

Study on the Uncertainty of Remote Sensing Information
下载PDF
导出
摘要 近年来遥感技术及遥感信息产业化发展迅猛 ,但遥感信息的不确定性制约着遥感信息的产品化和实用化的进一步发展。虽然 ,这一问题得到了国内外众多学者的关注 ,并提出和采用相关理论和方法进行分析 ,取得了相当的进展 ,但这些方法在分析遥感信息不确定性时忽略了一个重要的研究点 :遥感信息的不确定性传递机理。 To date, Remote Sensing technologies have been applied to environmental management, monitoring and control. Remote Sensing technologies are also being applied to monitor land desertification, land use cover, environment pollution, etc. Due to limitations in instrument and processing technology in RS, system errors and measurement errors may corrupt the data. Errors may be associated with both attribute value and its location. After collecting spatiald ata, we then need to process, analyze and convert the data in order to make RS information understandable to users. When we produce the final RS products, new errors can be created as a result of spatial operations on maps or images that contain errors (spatial error propagation). If we ignore these errors in the RS products, it can result in economic loss. Though, the uncertainty of remote sensing information has been a hotspot in the spatial information process and many research have provided us lots of valuable results, however very few of them is on the mechanism based. The existing methods applied to the uncertainty analysis of RS will lead to the blind spot where uncertainty could not be analyzed,and uncertainty in subsequent image product will be propagated, tracked and quantified inconveniently. In this paper, we propose a framework to deal with these problems.
出处 《遥感学报》 EI CSCD 北大核心 2004年第4期339-348,共10页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金 40 2 0 10 3 3项目 国家 863青年基金 2 0 0 1AA13 5 15 1项目 863项目 2 0 0 2AA13 5 2 3 0 1支持
关键词 遥感信息 不确定性 统计分析方法 机理分析方法 remote sensing uncertainty analysis data analysis method mechanism based method analysis
  • 相关文献

参考文献17

  • 1[1]Arbia G, Griffith D, Haining R. Error Propagation Modeling in Raster GIS: Adding and Rationing Operations [ J]. Cartography and Geographic Information Science, 1999, 26(4): 297-315.
  • 2[2]Cannel Y, Dean D J, Flather C H. Combining location and classification error sources for estimating multi-temporal database accuracy[ J].PE&RS, 2001,67(7): 865-872.
  • 3[3]Chrisman N R. The error component in spatial data, Chapter 12 in Maguire, D. J. , Goodchild M. F. and Rhind, D. W. (editors)Geographical Information Systems: Overview Principles and Applications, Longmans, New York. 1991,165-174.
  • 4[4]Clarke K C; Teague P D. Representation of cartographic uncertainty using virtual environments, Proceeding 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Netherlands, 2000,109- 116.
  • 5[5]Congalton R G, Green K. Assessing the Accuracy of Remotely Sensed Data: Principle and Practices[M]. Lewis Publishers. 1999.
  • 6[6]Edwards G, Lowell K E. Modeling Uncertainty in Photointerpreted Boundaries[J]. PE&RS. 1996, 62(4) :337-391.
  • 7[7]Gahegan M, Ehlers M. A framework for the modelling of uncertainty between remote sensing and geographic information systems[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 2000, 55: 176-188.
  • 8[10]Goedchild M F, Gopal S. The accuracy of spatial databases[M].New York: Taylor and Francis. 1989.
  • 9[11]Guptill S C, Morrison J L . Elements of spatial data quality, Elsevier Science. 1995.
  • 10[12]Leung Y, Dong T X, Xu Z B. The Optimal Encodings for Biased Association in Linear Associative Memory[J]. Neural Networks, 1998,11: 877-884.

同被引文献172

引证文献13

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部