期刊文献+

DRC-ACM:一种精确的基于解析中心的分类器 被引量:3

DRC-ACM: Accurate Analytical Center Machine for Classification
下载PDF
导出
摘要 ACM是一种基于版本空间 (versionspace)解析中心的分类器 ,它具有较好的泛化性能 但是由于冗余约束的存在 ,使得ACM分类器的解偏离主版本空间 (primeversionspace)解析中心 ,从而降低了分类器的泛化性能 ,同时冗余约束还将降低分类器的分类速度和存储效率 针对上述问题 ,提出了一种冗余约束增量约简算法 ,同时将增量约简算法与ACM分类器的算法结合起来 ,形成了一种去冗余约束的精确的ACM分类器 (DRC ACM ) 通过对Heart ,Thyroid ,Banana数据集的实验 ,证明DRC Analytical center machine (ACM) has remarkable generalization performance, which is based on analytical center of version space From the analysis of geometry of machine learning and principle of ACM, it is shown that some constraints are redundant to the description of version space Redundant constraints push analytical center away from that of the prime version space so that the generalization performance degrades, and at the same time redundant constraints slow down the classifier and reduce the efficiency of storage due to non sparsity of ACM To overcome the above problems, an incremental algorithm is proposed to delete redundant constraints and embed into the frame of ACM that yields a non redundancy, accurate analytical center machine for classification called DRC ACM Experiments with Heart, Thyroid, Banana datasets demonstrate the validity of DRC ACM
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第5期802-806,共5页 Journal of Computer Research and Development
关键词 冗余约束 约简 解析中心 多面集 增量算法 redundancy constraints reduction analytical center polyhedron incremental algorithm
  • 相关文献

参考文献7

  • 1B Scho1kopf,C J C Burges,A J Smola.Advances in Kernel Methods:Support Vector Learning.Cambridge,Massachusetts:The MIT Press,1999
  • 2A Smola,P Bartlett,B Scholkopf et al.Advances in Large Margin Classifiers.Cambridge,Massachusetts:The MIT Press,2000
  • 3V Vapnik.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 4Theodore B Trafalis,Alexander M Malysche.An analytic center machine.Machine Learning,2002,46(1/3):203~223
  • 5G Sonnevend.Lecture Notes in Control Information Sciences.New York:Springer-Verlag,1985.866~876
  • 6Richard J Caron,Harvey J Greenberg,Allen J Holder.Analytic Centers and Repelling Inequalities.1999.http://www-math.cudenver.edu/cem/reports
  • 7R Herbrich,T Graepel,C Campbell.Robust Bayes point machines.In:Proc of European Symposium on Artificial Neural Networks 2000.Bruges:Belgium,2000.49~54

同被引文献23

  • 1赵林,胡恬,黄萱菁,吴立德.基于知网的概念特征抽取方法[J].通信学报,2004,25(7):46-54. 被引量:17
  • 2曾凡仔,裘正定.一种基于可行域解析中心的多类分类算法[J].复旦学报(自然科学版),2004,43(5):773-776. 被引量:2
  • 3王亮申,欧宗瑛,朱玉才,侯杰,于京诺.基于SVM的图像分类[J].计算机应用与软件,2005,22(5):98-99. 被引量:18
  • 4朱晓霞,孙同景,陈桂友.基于二叉树和SVM的指纹分类[J].山东大学学报(工学版),2006,36(1):121-124. 被引量:4
  • 5Shen Minghua, Xiao Huaitie, Fu Qiang. A multi-class classifying algorithm based on nonlinear dimensionality reduction and support vector machines [C] //Proc of the SPIE. San Jose: SPIE, 2007:678-829.
  • 6Jelinek F. Statistical Methods for Speech Recognition[M]. Cambridge, MA.. MIT Press, 1998.
  • 7Liu Yi. Zheng Yuan F. One-against all multi class classification using reliability measures [C] //Proc of the IEEE lnt Joint Conf on Neural Networks. Piscataway, NJ: IEEE Express, 2005:849-854.
  • 8Harris, Christopher K Schmidtler, Mauritius A R. Effective multi-class support vector machine classification: United States, 7386527 [P]. 2006.
  • 9Ofer Dekel, Yoram Singer. Multiclass learning by probabilistic embeddings [J]. Advances in Neural Information Processing Systems, 2002, 15 : 945-952.
  • 10Erin J Bredensteiner, Kristin P Bennett. Multicategory classification by support vector machines [OL].[1999-05-10]. http://mpa, ire. it/biblio]papers[bredensteiner99multicategory, pdf.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部