期刊文献+

基于SGNN的数字字符识别

Digit Recognition Using Self-Generating Neural Network
下载PDF
导出
摘要 自生成神经网络SGNN具有自主学习能力强和计算速度快的特点,可用于识别带噪声的数字字符。首先提取数字字符的特征矢量,然后将特征矢量输入SGNN中对SGNN进行训练建立分类器,通过比较未知样本特征矢量和分类器根节点权值矢量的距离远近从而得到识别结果。实验表明这种方法有较高的识别正确率,其性能优于BP神经网络。 Using SGNN(Self-Generating Neural Network)to solve the problem of digit recognition is presented in this paper. SGNN's learning is an unsupervised process by which we could train a SGNT(Self-Generating Neural Tree)with a kind of digit's (such as 0,1,etc.)feature vector rapidly. Because each SGNT represent a number(0,1,…,9), we could find out the SGNT which has the minimum distance among 10 SGNTs —the distance is calculated from testing sample and SGNT's root—then the testing sample could be decided what number it is . The simulation proves that this method has a good performance in digit recognition.
出处 《航空计算技术》 2004年第1期76-78,共3页 Aeronautical Computing Technique
关键词 自生成神经网络 SGNN 自主学习能力 数字字符识别 计算机模式识别 self-generating neural network digit recognition pattern recognition classifier
  • 相关文献

参考文献6

  • 1Hoque M. S. , Fairhurst M.C. A Moving Window Classifier for Off- line Character Recognition[A]. Pr oceedings of the 7- th International Workshop on Frontiers in Handwriting Recognition. [C]. Amsterdam, Holland, 2000 ,595 - 600.
  • 2Y LeCun, L Bottou, Y Bengio, P Haffner. Gradient - based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, vol. 86(11) :2278-2344.
  • 3W. X. Wen, A. Jennings, and H. Liu. Learning a neural tree[A]. In International Joint Conference on Neural Networks, [C]. Beijing , China , 1992.
  • 4W. X. Wen, A. Jennings, H. Liu,and V. Pang. Some Performance Comparsions for Self- Generation Neural Tree[A]. In International Joint Conference on Neural Networks[C]. Beijing, China, 1992.
  • 5W. X. Wen, A. Jennings,and V. Pang. A Comparative Study between SGNN and SONN[A]. In International Joint Conference on Neural Networks, [C]. Beijing, China,1992.
  • 6柳回春,马树元,吴平东,李晓梅.手写体数字识别技术的研究[J].计算机工程,2003,29(4):24-25. 被引量:34

二级参考文献2

  • 1VAPNIKVN 张学工译.统计学习理论的本质[M].清华大学出版社,2000..
  • 2PandyaAS MacyRB.神经网络模式识别及其实现[M].北京:电子工业出版社,1999.7-110.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部