摘要
提出了一种基于背景网格的直角网格新型生成方法。背景网格是用来提供网格加密的信息 ,通过网格尺度与所得计算参数的比较 ,定量判断确定网格是否需要加密 ;而在求解 Euler方程计算中 ,采用的是 Jameson的有限体积法 ,它可以适合任意形状的网格单元 ,以及四步 Runge-Kutta时间推进。本文对 NACA0 0 1 2翼型和复杂多段翼型等问题进行了数值实验。结果表明 ,这种网格生成方法易于推广到三维情况中去 ,具有网格生成时间短 ,收敛速度快 。
A new method for cartesian mesh generation is developed. The backgrid is used to provide the information for refining the cartesian mesh. By quantitative comparison between the mesh scale and the calculated parameter,the mesh is refined or not. In the Euler computation, the Jameson′s finite volume solver used by arbitrary grids and four-stage Runge-Kutta time-stepping method are applied in solving Euler equation. Numerical results show that the method can more conveniently simulate the complex flow field and the time for mesh generation is reduced.The good convergence level is reached for flow computation due to the good quality of the computational gird. It is convenient to be extended to 3-D problems.
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2004年第3期284-287,共4页
Journal of Nanjing University of Aeronautics & Astronautics