摘要
计算流体力学(CFD)技术中的时域有限体积法(FVTD)被推广到计算电磁学中,直接数值求解时变麦克斯韦方程组。FVTD使用电磁场矢量共置于网格单元中心、散射场积分形式的麦克斯韦方程组守恒形,空间离散使用基于特征值的近似黎曼解构建网格单元边界通量,时间推进采用四阶龙格-库塔法。TM和TE波极化下几种二维完全导电体的表面诱导电流密度和雷达散射截面(RCS)计算验证表明,时域有限体积法是一种高精度有效的时域方法。
The Maxwell equations of electromagnetism which governs electromagnetic phenomena are hypersonic sets of Partial Differential Equations (PDE) as the inviscid Euler equations of aerodynamics, then the Finite-Volume Time-Domain method (FVTD) of Computational Fluid Dynamics (CFD) was extended to Computational Electromagnetics (CEM), and directly numerical computed time dependent Maxwell's equations. A cell-centered, scattered field form Maxwell's equations conservative law was used in FVTD, in which uses characteristic-based approximate Riemann solution to reconstruct spatial flux and four step Runge-Kutta algorithm to time marching. The computed surface inducted current density and radar cross section of several 2-D perfectly conducting scatters in both Transverse-Magnetic (TM) and Transverse-Electric (TE) polarization demonstrated the method was effective and high accurate.
出处
《空气动力学学报》
EI
CSCD
北大核心
2004年第2期185-189,共5页
Acta Aerodynamica Sinica
关键词
CFD
电磁散射
数值模拟
计算流体力学
时域有限体积法
雷达散射截面
Computational fluid dynamics
Computer simulation
Electromagnetism
Finite volume method
Maxwell equations
Partial differential equations
Radar cross section
Runge Kutta methods
Time domain analysis