期刊文献+

金属高Miller指数表面能的分子动力学研究 被引量:1

MOLECULAR DYNAMICS SIMULATION OF THE SURFACE ENERGIES OF HIGH-INDEX SURFACES IN METALS
下载PDF
导出
摘要 利用嵌入原子型原子间相互作用势的分子动力学,计算了金属Al,CU,Ni位于两个晶带上([001]晶带和[110]晶带)一系列高Miller指数面的表面能.推广了基于表面结构单元模型的经验公式.计算结果表明,利用本文推广的经验公式可根据几个低Miller指数面的表面能估计出高Miller指数面的表面能和表面结构特征.最密排面的表面能最低;最密排面(111)和次密排面(110),(100)的表面能分别是表面能值随晶向角度θ变化曲线上的极小值;理论模拟结果、公式计算结果和已有的实验数据三者符合得较好. Interatomic potentials of the embedded atom (EAM) type and molecular dynamics simulation are used to calculate the surface energies of the high-index surfaces containing the [001] or [110] zone axis in Al, Cu and Ni. Two empirical formulas are developed based on structural unit model for high-index surfaces. The calculation result shows these formulas can be used to give an estimation of the energies of the high-index surfaces. The closest packed surfaces have the lowest surface energy and the surface energies of the closest surface (111) surface and the next closest surfaces (110) and (100) surfaces are the extremum on the curve of surface energy versus orientation angle. Both the theoretical simulation results and the empirical formula calculation results consist with the available experiment data.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2004年第6期589-593,共5页 Acta Metallurgica Sinica
基金 河南省自然科学基金0111050400 河南省高校青年骨干教师基金
关键词 高Miller指数表面 表面能 分子动力学模拟 high-index surface surface energy molecular dynamics
  • 相关文献

参考文献4

二级参考文献26

  • 1[1]Bazant Zdenek, Er-Ping Chen. Adv Mech, 1999; 2
  • 2[2]Brenner S S. J Appl Phys, 1956; 97:1484
  • 3[3]Schiφtz, Francesco D.Di, Karsten W. Jacobsen. 1998; 391:561
  • 4[4]Craihead H G. Science, 2000; 290:1532
  • 5[5]Hafner J. Acta Mater, 2000; 48:71
  • 6[6]Allen M P, Tildesley D J. Computer Simulation uids, Oxford: Clarendon Press, 1987:284
  • 7[7]Masao Doyama, Kogure Y. Comput Mater Sci, 1980
  • 8[8]Parrinello M, Rahman A. J Appl Phys, 1981; 52:7
  • 9[9]Cammarata R C. Prog Surf Sci, 1994; 46(1): 1
  • 10Li J M,Chin Phys Lett,1997年,14卷

共引文献30

同被引文献7

  • 1禹营,汪家道,陈大融.疏水表面的摩擦阻力特性研究[J].润滑与密封,2006,31(9):15-16. 被引量:13
  • 2田军,徐锦芬,薛群基.低表面能涂层的减阻试验研究[J].水动力学研究与进展(A辑),1997,12(1):27-32. 被引量:30
  • 3Fukuda K,Tokunaga J,Nobunaga T,et al. Frictional drag reduction with air lubricant over a super-water repellent surface[J]. Journal of Marine Science and Technology,2000,5(3):123-130.
  • 4Lauga E,Stone H A. Effective slip in pressure-driven stokes flow[J]. Journal of Fluid Mechanics,2003,489(8):55-77.
  • 5Ou J,Perot B,Rothstein J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids,2004,16(12):4635-4643.
  • 6Choi C H,Kim C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters,2006,96(6):066001.
  • 7TMS320VC33 Data Sheet.Texas Instruments[Z].2000.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部