期刊文献+

Lienard Equation and Exact Solutions for Some Soliton-Producing NonlinearEquations 被引量:2

Lienard Equation and Exact Solutions for Some Soliton-Producing Nonlinear Equations
下载PDF
导出
摘要 In this paper, we first consider exact solutions for Lienard equation with nonlinear terms of any order. Then,explicit exact bell and kink profile solitary-wave solutions for many nonlinear evolution equations are obtained by means of results of the Lienard equation and proper deductions, which transform original partial differential equations into the Lienard one. These nonlinear equations include compound KdV, compound KdV-Burgers, generalized Boussinesq,generalized KP and Ginzburg-Landau equation. Some new solitary-wave solutions are found.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第6期849-858,共10页 理论物理通讯(英文版)
基金 国家自然科学基金,上海市科委资助项目
关键词 solitary wave Lienard equation compound KdV equation compound KdV-Burgers equation generalized Boussinesq equation generalized KP equation Ginzburg-Landau equation 孤立波解 Lienard方程 组合KdV-伯格斯方程 Ginzburg-Landau方程 微分方程
  • 相关文献

参考文献10

  • 1J.L.Bona,M.E.Schonbek. Proc.R.Soc.Edin.A . 1985
  • 2R.L.Pego,M.I.Weinstein. R.Soc.London A . 1992
  • 3R.L.Pego,P.Smereka,M.I.Weinstein. Physica D Nonlinear Phenomena . 1993
  • 4W.G.Zhang. Acta.Math.Sci . 1996
  • 5NI Wan-Sun,WEI Rong-Jue.Solitary Wave in Water Trough[]..1997
  • 6M.J.Ablowitz. Studies in Applied Mathematics . 1978
  • 7De-Xing Kong. Physics Letters A . 1995
  • 8Zhao-Sheng Feng. Physics Letters A . 2002
  • 9H.H.Chen,Y.C.Lee,C.S.Liu. Physica Scripta . 1979
  • 10V.S.Gerdjikov,I.Ivanov. Bulg.J.Phys . 1983

同被引文献22

  • 1Boussinesq J. Theorie des ondes et des remous qui sepropagent le long d'un canal rectangulaire horizontal,en communiquant au liquide contenu dans ce canal desvitesses sensiblement pareilles de la surface au fond[J]. Journal de Mathematiques Pures et Appliquees,1872,2(17):55- 108.
  • 2Whitham G B. Linear and nonlinear wave [M]. NewYork : Springer,1974.
  • 3Zhankarov V E. On stochastization of one-dimensionalchains of nonlinear oscillation [J]. Soviet Physics-JETP,1974,38(1) :108-110.
  • 4Mckean H P. Boussinesq^ equation on the circle [J].Communications on Pure and Applied Mathematics,1981,34(5):599-691.
  • 5Weiss J,Tabor M,Carnevale G. The Painleve propertyfor partial differential equations [ J ]. Journal ofMathematical Physics, 1983 .24(3) : 522 - 526.
  • 6Weiss J. The Painleve property for partial differentialequations. II: Backlund transformation, Lax pairs, andthe Schwarzian derivative[J]. Journal of MathematicalPhysics,1983,24(6) :1405 - 1413.
  • 7Weiss J. The Painleve property and Backlundtransformations for the sequence of Boussinesqequations[J]. Journal of Mathematical Physics,1985,26(2):258-269.
  • 8Zakharov V E,Manakov S V,Novicov S P,et al.Theory of solitons:the inverse scattering method[M].New York:Plenum Press, 1984.
  • 9Bona J J, Sachs R L. Global existence of smoothsolutions and stability of solitary waves for ageneralized boussinesq equation [J]. Communicationsin Mathematical Physics, 1988,118(1) : 15 - 29.
  • 10Linares F. Global existence of small solutions for ageneralized boussinesq equation [ J ]. Journal ofDifferential Equations,1993,106(2):257 - 293.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部