期刊文献+

量化子空间分布隐马尔可夫模型的直接训练 被引量:1

Direct Training of Quantized Subspace Distribution Hidden Markov Model
下载PDF
导出
摘要 尽管量化子空间分布隐马尔可夫模型 ( QSDHMM)的间接训练算法具有简单实用等优点 ,但仍存在两个方面的不足 :其一 ,QSDHMM的间接训练实际上要经历两个最优化过程 ,即先用原始语音数据训练连续分布隐马尔可夫模型 ( CDHMM) ,然后将训练好了的 CDHMM转换成 QS-DHMM.因此 ,QSDHMM的精度将受到影响 ;其二 ,没有发挥 QSDHMM本身参数少的潜在优势 .在系统的子空间捆绑结构为已知的前提下 ,文中提出了 QSDHMM的直接训练算法 .仿真实验表明 ,与传统的训练算法相比较 ,采用直接训练算法可减少训练数据约 1 0倍 。 Though the indirect training algorithm of the quantized subspace distribution hidden Markov model (QSDHMM) is simple and applicative. It has two drawbacks: (1) It involves two separate optimization processes——first training continuous distribution hidden Markov model (CDHMM), then converts to QSDHMM, so the accuracy of QSDHMM is not guaranteed to be optimal. (2) It does not take potential advantage of the fewer model parameters in QSDHMM. This paper devises a QSDHMM training algorithm to estimate QSDHMM parameters directly from speech data if having a prior knowledge of the subspace distribution tying structure of the system (SDTS). Computer simulation shows that using direct training algorithm to estimate QSDHMM parameters can reduce the training data roughly 10 times in comparison with the traditional algorithm, but almost no loss in recognition accuracy.
出处 《武汉理工大学学报(交通科学与工程版)》 北大核心 2004年第3期431-434,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 湖北省教育厅重点项目基金资助 (批准号 :2 0 0 2 A0 2 0 0 4
关键词 量化子空间分布隐马尔可夫模型 直接训练 子空间捆绑结构 quantized subspace distribution hidden Markov model directly training subspace distribution tying structure
  • 相关文献

参考文献10

二级参考文献21

  • 1Bocchieri E, Mark B. Subspace distribution clustering hidden Markov mold. IEEE Trans. Speech and Audio Processing, 2001, 9(3) : 264--275.
  • 2Tadahashi S, Sagayama S. Four-level tied-structure for efficient representation of acoustic modeling. Proc.IEEE Int. Conf. Acoustics, Speech, Signal processing,1995, 1:520--523.
  • 3Rabiner L, Juang B H. Fundamentals of Speech Recognition. Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 4Bellegarda J R, Nahamoo D. Tied mixture continuous parameter modeling for speech recognition. IEEE Trans. Acoustics, Speech,Signal Processing, 1990, 38:2033-2045.
  • 5Takahashi S, Sagayama S. Effects of variance tying for four-level tied structure phone models. Proc. ASI Conf., 1995, 1:141--142.
  • 6Huang X, Jack M A. Semi-continuous Hidden Markov models for speech signals. Journal of computer speech and language, 1989, 3(3): 239--251.
  • 7Xiaolin L, Parizeau M, Plamon R. Training hidden Markov models with multiple observations--A combinatorial method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(4 ) : 371 - 377.
  • 8Baggenstoss P M. A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces [J].IEEE Transactions on Speech and Audio Processing, 2001,9(4) :411-416.
  • 9Bocchieri E, Mark B. Subspace distribution clustering hidden Markov model [J]. IEEE Transactions on Speech and Audio Processing,2001,9(3) :264-275.
  • 10Rabiner L, Juang B H. Fundamentals of Speech Recognition[M]. Indianapolis : Prentice-Hall, 1993.

共引文献19

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部