期刊文献+

计算具有区间参数结构的固有频率的优化方法 被引量:13

GLOBAL OPTIMIZATION METHOD FOR COMPUTING FREQUENCIES OF STRUCTURES WITH INTERVAL UNCERTAIN PARAMETERS
下载PDF
导出
摘要 基于区间函数的单向包含性质,把具有区间非确定参数结构的固有频率所在区间范围问题转化成两个全局优化问题,并采用一种实数编码遗传算法求取问题的全局解.用一种能够求得剪切型结构和弹簧质量系统特征值范围精确解的单调分析方法进行检验.在一些文献中,直接采用区间数运算法则和有限元法得到结构区间刚度阵和区间质量阵,并把关于该区间刚度阵和区间质量阵的广义区间特征值问题的特征值区间作为待求的非确定性结构的特征值所在的区间范围,该方法易于扩大问题的解域.算例表明,可望得到结构固有频率区间范围的准确解. Based on the inclusion monotone property of interval functions, a global optimization method is proposed to compute the upper and lower bounds of the natural frequencies of uncertain structures. Two computational models are presented, in which the interaction among uncertain parameters in the stiffness matrix and the mass matrix was neglected or taken into consideration respectively. A real code genetic algorithm is used to solve these optimization models. A monotone analysis method, which can obtain the exact frequencies' intervals of shear-frame structures and multi-mass-spring systems, is introduced to illustrate the effectiveness of the proposed method. Numerical examples showed that the interaction among the uncertain parameters in the stiffness matrix and the mass matrix should be taken into consideration and the results of interval perturbation method could be improved distinctly. The method to form the interval stiffness matrix and the interval mass matrix firstly and then consider the eigenvalues' intervals of the general interval matrix eigenvalue problem about the obtained interval matrices as the solution of the uncertain structures may enlarge the solution domain of the original problem.
作者 王登刚
出处 《力学学报》 EI CSCD 北大核心 2004年第3期364-372,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10072014 10302023) 中国博士后科学基金资助项目.~~
关键词 区间分析 全局优化 遗传算法 单调分析 固有频率 结构力学 interval analysis, global optimization, genetic algorithm, monotone analysis method, natural frequencies
  • 相关文献

参考文献30

  • 1Chen SH, Yang XW. Interval finite element method for beam structures. Finite Elenents in Analysis and Design,2000, 34:75~88
  • 2Muhanna RL, Mullen RL. Uncertainty in mechanics problems-Interval-based approach. Journal of Engineering Mechanics, 2001, 127:557~566
  • 3Moore RE. Interval Analysis. Englewood Cliffs: PrenticHall, 1966
  • 4Alefeld G, Herzberger J. Introduction to Interval Computations. New York: Academic Press, 1983
  • 5Rao SS, Berke L. Analysis of uncertain structural system using interval analysis. AIAA Journal, 1997, 35:727~735
  • 6Elishakoff I. Three versions of the finite element method based on concept of either stochasticty, fuzziness or anti-optimization. Applied Mechanics Review, 1998, 51:209~218
  • 7Koyluoglu HU, Cakmak AS, Nielsen SR. Interval algebra to deal with pattern loading and structural uncertainty. Journal of Engineering Mechanics, ASMC, 1995,121:1149~1157
  • 8Mcwilliam S. Anti-optimization of uncertain structures using interval analysis. Computers and Structures, 2001, 79:421~430
  • 9Qiu ZP, Elishakoff I. Anti-optimization technique-a generalization of interval analysis for nonprobabilistic treatment of uncertainty. Chaos, Solitons and Fractals, 2001,12:1747~1759
  • 10王登刚.区间计算和区间反演理论研究.同济大学博士后科研工作报告, 2003(Wang Denggang. Study on interval computation and interval inversion theory. Postdoctoral research of Tongji University, 2003 (in Chinese))

二级参考文献26

  • 1邱志平,陈望寰,周振平.对称区间矩阵标准特征值问题的一种新算法[J].吉林工业大学学报,1994,24(3):62-66. 被引量:10
  • 2田玮,凌燮亭.基于区间线性方程组解的电路容差分析[J].电子学报,1995,23(9):56-60. 被引量:5
  • 3沈祖和.区间分析方法及其应用[J].应用数学与计算数学,1983,2:1-27.
  • 4邱志平.不确定参数结构静力响应和特征值问题的区间分析方法:博士论文[M].吉林工业大学,1994..
  • 5吴凯华.隧洞围岩原始应力与弹性常数的反分析[J].土木工程学报,1998,21(2):51-59.
  • 6李庆扬 莫孜中 等.非线性方程组的数值解法[M].科学出版社,1999..
  • 7王德人 张连生 等.非线性方程的区间算法[M].上海:上海科学技术出版社,1986..
  • 8陈绍汀.复固有频率的界限定理[J].力学学报,1985,17(4):324-328.
  • 9陈绍汀,力学学报,1985年,17卷,4期,324页
  • 10黄琳,系统与控制理论中的线性代数,1984年,155页

共引文献60

同被引文献114

引证文献13

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部