期刊文献+

二进制序列非周期相关函数的新下界 被引量:4

原文传递
导出
摘要 为了减少或消除码分多址(CDMA)系统的多址干扰,需要设计一组具有优良自相关函数(ACF)和互相关函数(CCF)的扩频序列.一般而言,很难夸大扩频序列对于CDMA系统的重要性,因为其系统性能界取决于所用扩频序列的类型、长度和码片速率,不同的扩频序列对应于不同的系统性能界.建立了二进制扩频序列集的最大非周期自相关边峰值和最大非周期互相关值关于序列长度和序列数目的新下界,这些下界比已知的Sarwate界、Welch界和Levenshtein界更紧.
出处 《中国科学(E辑)》 CSCD 北大核心 2004年第6期629-645,共17页 Science in China(Series E)
基金 国家自然科学基金与香港研究资助局联合科研资助基金(批准号:60218001) 国家自然科学基金(批准号:69931050) 通信抗干扰技术国家重点实验室基金 国家自然科学基金与英国皇家学会联合科研资助项目
  • 相关文献

参考文献15

  • 1[1]Fan P Z, Darnell M. Sequence Design for Communications Applications. New York: Wiley, 1996
  • 2[2]Pursley M B, Sarwate D V. Performance evaluation for phase-coded spread spectrum multiple-access communications-Part Ⅰ: System analysis. IEEE Trans Commun, Aug. 1977, Vol. COM-25:795~799
  • 3[3]Sarwate D V, Pursley M B. Crosscorrelation properties of pseudonoise and related sequences. In:Proceedings of The IEEE, Vol.68, No. 5, May 1980. 593~619
  • 4[4]Sarwate D V. Bounds on crosscorrelation and autocorrelation of sequences. IEEE Trans Inform Theory,SCIENCE IN CHINA Ser. E Information Sciences 1979, 25:720~724
  • 5[5]Welch L R. Lower bounds on the maximum crosscorrelation of signals. IEEE Trans Inform Theory, 1974,Vol. IT-20:397~399
  • 6[6]Sidelnikov V M. Cross correlation of sequences. Probl Kybem, 1971, 24:15~42
  • 7[7]Sidelnikov V M. On mutual correlation of sequences. Soviet Math Doklady, 1971, 12:197~201
  • 8[8]Massey J L. On Welch's Bound for the crosscorrelation of a sequence set. In: Proceedings of EEE ISIT'90,Sept. 1990. 385~385
  • 9[9]Levenshtein V I. New lower bounds on aperiodic crosscorrelation of binary codes. IEEE Trans Inform Theory, 1999, 45(1): 284~288
  • 10[10]Peng D Y, Fan P Z. Bounds on Aperiodic auto- and cross-correlations of binary sequences with low or zero correlation zone. In: PDCAT'2003 Proceedings, IEEE Press, ISBN:0-7803-7840-7, August, 2003. 882~886

同被引文献27

  • 1詹亚锋,曹志刚,马正新.DSSS信号的扩频序列估计[J].电子与信息学报,2005,27(2):169-172. 被引量:35
  • 2毛飞,蒋挺,赵成林,周正.伪随机二进序列偶研究[J].通信学报,2005,26(8):94-98. 被引量:16
  • 3Fan P Z, Darnell M. Sequence design for communications applications [M]. NewYork: Wiley, 1996: 1-44.
  • 4Sarwate D V, Pursley M B. Crosscorrelation properties of pseu- dorandom and related sequences [J]. Proceedings of the IEEE, 1980,68 (5): 593-619.
  • 5Welch L R. Lower bounds on the maximum cross correlation ofsignals [J]. IEEE Transactions on Information Theory, 1974,20 (3): 397-399.
  • 6Levenshtein V I. New lower bounds on aperiodic crosscorrelation of binary codes [J]. IEEE Transactions on Information Theory, 1999,45 (1): 284-288.
  • 7Cooklev T, Nishihara A. Analytic constructions of periodic and non-periodic complementary sequences [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer, 2006, E89-A (11): 3272-3282.
  • 8Ghaisari Jafar, Ferdosi Arash. A direct sequence spread spectrum code acquisition circuit for wireless sensor networks [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 2011,98(6): 793-800.
  • 9Li Yi-bing, Deng Chen-hui, Liu Yu-mei. A modified orthogonal sequence for spread spectrum communication and distanee estimation multiplex system[C].广西桂林:第八届国际信号处理国际会议论文集[C].2006:638-641.
  • 10J.Ren. Design of Long Period Pseudo-Random Sequences from the Addition of m-Sequences over Fp [J]. EURASIP Journal on Wireless Communication and Networking, 2004 (1): 12-18.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部