期刊文献+

周期函数的数值微分问题 被引量:5

Numerical Differentiation for Periodic Functions and Its Applications
原文传递
导出
摘要 用Tikhonov正则化方法讨论了周期函数的数值微分问题 .证明Tikhonov正则化泛函存在唯一的极小元 ,且这个极小元是一个周期样条 ,并给出了该方法的误差估计 .同其他相关的工作相比 ,发现对周期函数而言 。 The numerical differentiation for the periodic functions is discussed by Tikhonov redularization. It is shown that there exists a unique minimizer for the Tikhonov regularization functional and minimizer is a periodic spline. The error estimate of our method is also given. Compared with other related methods, it gives better approximation on the boundary points. one numerical example is presented .
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期315-322,共8页 Journal of Fudan University:Natural Science
关键词 周期函数 数值微分 TIKHONOV正则化 误差估计 周期样条 变分法 ill-posed problems Tikhonov regularization numerical differentiation variation periodic spline
  • 相关文献

参考文献8

  • 1Lattes R, Lions J L. The method of quasi-reversibility:Applications to partial differential equations [M].New York:Elsevier, 1986.
  • 2Hanke M, Scherzer O. Inverse problems light:Numerical differentiation [J].Amer Math Monthly, 2001,108(6):512-521.
  • 3Wang Y B, Jia X Z, Cheng J. A numerical differentiation method and its application to reconstruction of discontinuity [J]. Inverse problems, 2002, 18:1461-1475.
  • 4Reinsch C H. Smoothing by spline functions [J].Numer Math, 1967,10:177-183.
  • 5Cheng J, Jia X Z, Wang Y B. Numerical differntiation on the nonuniform grid and its error estimate [R].Proc of the International Conference on Inverse Problems and Its Applications, Hong Kong, China, 2002.
  • 6Schoenberg I J. Spline functions and the problem of graduation [J].Proc Nat Acad Sci, 1964, 52:947-950.
  • 7Strang G, Fix G J. An analysis of the finite element method [M].NJ:Prentice-Hall, 1973.
  • 8贾现正,王彦博,程晋.散乱数据的数值微分及其误差估计[J].高等学校计算数学学报,2003,25(1):81-90. 被引量:11

二级参考文献12

  • 1[1]Cheng, J. and Yamamoto, M.. One new strategy for a priori choice of regularizing parametersin Tikhonov's regularization. Inverse Problems, 2000, 16:L31-L38
  • 2[2]Deans. S.R.. Radon transform and its applications. A Wiley-Interscience Publication, 1983
  • 3[3]Engl, H.W., Hanke, M. and Neubauer. A.. Regularization of Inverse Problems, 1996
  • 4[4]Gorenflo, R. and Vessella, S.. Abel integral equations. Analysis and Applications. Lecture Notes in Mathematics, 1461. Springer-Verlag, Berlin, 1991
  • 5[5]Groetsch, C.W.. The theory of Tikhonov regularization for Fredholm equations of the first kind. Research Notes in Mathematics, 105. Pitman (Advanced Publishing Program), Boston, Mass-London, 1984
  • 6[6]Hammerlin, G. and Hoffmann, K.H.. Numerical mathematics. New York: Springer-Verlag,1991
  • 7[7]Hanke, M. and Scherzer, O.. Inverse problems light: numerical differentiation. Amer. Math. Monthly, 2001, 108(6):512-521
  • 8[8]Hegland, M.. Resolution enhancement of spectra using differentiation. Preprint 1998
  • 9[9]Reinsch, C.H.. Smoothing by spline functions. Numer. Math., 1967, 10:177-183
  • 10[10]Schumaker, L.L.. Spline functions: basic theory. Wiley, New York, 1981

共引文献10

同被引文献36

  • 1王兴华,崔峰.具有最高逼近阶的稳定Lagrange数值微分法[J].中国科学(A辑),2005,35(11):1314-1320. 被引量:3
  • 2崔丽,秦大同,石万凯.行星齿轮传动啮合效率分析[J].重庆大学学报(自然科学版),2006,29(3):11-14. 被引量:25
  • 3赵庆华.数值积分校正公式[J].数学的实践与认识,2007,37(9):207-208. 被引量:24
  • 4吴天毅.数值积分中点公式的改进[J].天津理工大学学报,2007,23(3):56-59. 被引量:2
  • 5Wang Y.B. , X.Jia, J. ZandCheng. A numerical differentiation method and its application to reconstruction of discontinuity[J]. Inverse Problems,2002, 18: 1461-1476.
  • 6Christian H.Reinsch. Smoothing by Spline Functions[J]. Numerische Mathematik, 1967, 10: 177-183.
  • 7Hristian H.Reinsch. Smoothing by Spline Functions Ⅱ[J]. Numer. Math., 1971, 16: 451-454.
  • 8Martin Hanke and Otmar Scherzer. Inverse Problem Light: Numercial Differentiation[J]. THE MATHEMATICAL ASSOCIATION OF AMERICA, 2001, 108: 512-521.
  • 9Huang Jianguo and Chert Yu. A regularization method for the funtion reconstruction from approximate average fluxes[J]. Inverse Problems, 2005, 21: 1667-1684.
  • 10Strang G., Fix G. J. An analysis of the finite element method[M]. NJ: Prentice-Hall, 1973.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部