期刊文献+

一类考虑接种的结核病模型的稳定性分析 被引量:3

Dynamics of a TB Model with Vaccination
下载PDF
导出
摘要  本文研究一类考虑接种的结核病模型解的稳定性,定义了模型的基本再生数。通过构造Lyapunov函数,证明了当时无病平衡点是全局稳定的;利用一致持续理论,证明了当时疾病将一直存在下去;也证明了在一定条件下唯一的地方平衡点是全局渐近稳定的。最后通过数值模拟比较了不同的接种情况对结核传播的影响。 We establish and study a TB model with vaccination. The basic reproduction number  is defined. It is proved that the disease-free equilibrium is globally asymptotically stable when  by Lyapunov function. The disease is uniformly persistent when  by using uniformly persistent theory. We also prove that the unique endemic equilibrium is globally asymptotically stable under certain conditions. Finally, we compare the influence of vaccination on the spread of tuberculosis by numerical simulations.
作者 陈娜 周义仓
出处 《应用数学进展》 2012年第1期1-11,共11页 Advances in Applied Mathematics
基金 加拿大IDRC Research Chair in Modeling and Management of Communicable Diseases项目(Grant Number: 104519-010)。
  • 相关文献

参考文献1

同被引文献14

  • 1Helong LIU,Jingyuan YU,Guangtian ZHU.GLOBAL ASYMPTOTIC STABLE ERADICATION FOR THE SIV EPIDEMIC MODEL WITH IMPULSIVE VACCINATION AND INFECTION-AGE[J].Journal of Systems Science & Complexity,2006,19(3):393-402. 被引量:7
  • 2BLOWER S M, MCLEAN A R, PORCO T C, et al. The intrinsic transmission dynamics of tuberculosis epidemics [J]. Nature Medicine, 1995(1): 815-821.
  • 3OU S C, CHUNG H Y, CHUANG C Y. A biomathematic models for tuberculosis using Lyapunov stability functions [J]. Lecture Notes in Computer Science, 2010, 6377(1): 447-453.
  • 4CASTILLO C C, JUN S B. Dynamical models of tuberculosis and their applications [J]. Mathematical Bioscience and Engineering, 2004, 1(2): 361-404.
  • 5BOWANG S, TEWA J J. Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate [J]. Communications in Nonlinear Science Numerical Simulation, 2010, 15(11): 3621-3631.
  • 6LIU J L, ZHANG T L. Global stability for a tuberculosis model [J]. Mathematical and Computer Modelling, 2011. 54(1-2): 836-845.
  • 7ZHOU Y C, KHAN K, FENG Z, et al. Projection of tuberculosis incidence with increasing immigration trends [J]. Journal of Theoretical Biology, 2008, 254(2): 215-228.
  • 8CAO H, ZHOU Y C. The age-structured SEIT model with application to tuberculosis transmission in china [J]. Mathematical and Computer Modelling, 2012, 55(3-4): 385-395.
  • 9ALLEN L J S, VAN DEN DRIESSCHE P. The basic reproduction number in some discrete-time epidemic models [J]. Journal of Difference Equations and Applications, 2008, 14(5): 1127-1147.
  • 10由守科,闫萍.一类具有潜伏期和染病年龄的SEIR传染病模型[J].新疆大学学报(自然科学版),2010,27(3):288-297. 被引量:11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部