期刊文献+

富勒烯C<sub>10n</sub>的化学拓扑指数计算

Calculation of Topological Index for Fullerene C<sub>10n</sub>
下载PDF
导出
摘要 在计算化学中,分子结构用图模型来表示称为分子图。其中每个顶点代表一个原子,每条边代表原子之间的化学键。研究发现,定义在分子图上的拓扑指数能反映化合物或者药物的化学性质。本文利用化学结构分析和边划分的方法得到富勒烯C10n的第二类ABC指数,第二类GA指数,以及修改的Szeged指数。 In computational chemistry, the molecular structures are modelled as graphs which are called the molecular graphs. In these graphs, each vertex represents an atom and each edge denotes covalent bound between atoms. It is shown that the topological indices defined on the molecular graphs can reflect the chemical characteristics of chemical compounds and drugs. In this paper, we present the second ABC index, the second GA index and modified Szeged index of fullerenes C10n&#160;by means of chemical structure analysis and edge dividing techniques.
作者 韩念念 高炜
出处 《应用数学进展》 2016年第1期150-157,共8页 Advances in Applied Mathematics
基金 国家自然科学青年基金资助项目(11401519)。
  • 相关文献

参考文献1

二级参考文献9

  • 1Todeschini R, Consonni V. Handbook of Molecular Descriptors[M]. Wiley-VCH: Weinheim, 2000.
  • 2Khadikar P V, Karmarkar S. A novel PI index and its applications to QSPR/QSAR studies[J]. J Chem Inf Comput Sci, 2001, 41: 934-949.
  • 3Pogliani L. From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors[J]. Chem Rev, 2000, 100: 3827-3858.
  • 4Gutman I. A formula for the Wiener number of trees and its extension to graphs containing cycles[J]. Graph Theory Notes New York, 1994, 27: 9-15.
  • 5Khadikar P V. On a novel structural descriptor PI[J]. Nat Acal Sci Left, 2000, 23: 113-118.
  • 6Fath-Tabar G, Furtula B, Gutman I. A new geometric-arithmetic index[J]. J Math Chem, 2010, 47: 477-486.
  • 7Dolati A, Motevalian I, EhyaeeA. Szeged index, edge Szeged index, and semi-star trees[J]. Discrete Appl Math, 2010, 158: 876-881.
  • 8Zhou B, Gutman I, Furtula B, Du Z. On two types of geometric-arithmetic index[J]. Che/n Phys Lett, 2009, 482: 153-155.
  • 9Vukicevic D, Furtula B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges[J]. J Math Chem, 2009, 46: 1369-1376.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部