期刊文献+

一类四维超混沌系统的Hopf分岔研究

Research on Hopf Bifurcation of a 4D Hyperchaotic System
下载PDF
导出
摘要 针对一类四维Lorenz型超混沌系统,基于中心流形及Hopf分岔相关理论,研究了该系统在原点平衡点处发生的Hopf分岔行为,得到了系统在Hopf分岔点的特性,包括分岔产生周期解的条件、周期解的分岔方向及稳定性等,并借助数值模拟验证了理论分析的正确性。 This paper proposes a 4D Lorenz-type hyperchaotic system. Based on the center manifold theory and Hopf bifurcation theory, the Hopf bifurcation at origin of this system is investigated;complete mathematical characterizations for 4D Hopf bifurcation, including the direction of Hopf bifurcation and the stability of bifurcating period solutions are rigorously derived and studied, and numerical simulations are performed to justify the theoretical analysis.
作者 陈玉明
出处 《应用数学进展》 2017年第4期474-480,共7页 Advances in Applied Mathematics
基金 国家自然科学基金(11626068) 广东省自然科学基金(2015A030310424) 广东省普通高校特色创新项目(2016KTSCX076)。
  • 相关文献

参考文献1

二级参考文献12

  • 1王绍明,吴春诚.利用单个状态变量控制广义Lorenz混沌系统[J].河南大学学报(自然科学版),2007,37(5):461-464. 被引量:1
  • 2Chang Y,Chen G.Complex dynamics in Chen’’s system[].ChaosSolitons&Fractals.2006
  • 3Yang Q,Zhang K,Chen G.Hyperchaotic attractors from a linearly controlled Lorenz system[].Nonlinear Analysis:Real World Applications.2009
  • 4Ruy B.Dynamics of a hyperchaotic Lorzen system[].International Journal of Bifurcation and Chaos.2007
  • 5Zhao Dawei,Chen Guanrong,Liu Wenbo.A chaos-based robust wavelet-domain watermarking algorithm[].Chaos Solitons Fractals.2004
  • 6Guckenheimer J,Holmes PJ.Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[]..1983
  • 7Zhou T,Chen G,Tang Y.Chen‘s attractor exists[].International Journal of Bifurcation and Chaos.2004
  • 8Chen,G.,Li,C.A note on bifurcation control[].International Journal of Bifurcation and Chaos.2003
  • 9Hassard B,Kazarino? N,Wan Y.Theory and Applicaton of Hopf Bifurcation[]..1982
  • 10Chang Y,Chen G.Complex dynamics in Chen’’s system[].ChaosSolitons&Fractals.2006

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部