期刊文献+

G<sup>+--</sup>的平面性

The Planarity of G<sup>+--</sup>
下载PDF
导出
摘要 对于一个简单图G,变换图G+??定义为 ,且两个顶点 相邻当且仅当满足下列三个条件:1)&#160;并且 ,2)&#160;并且 在G 中不相邻,3) x和y,其中一个在 中,另一个在 中,并且它们在G中关联。在这篇文章里,我们将证明G+??是平面的当且仅当 或者与下列的某个图同构:C3,C3 + K1,P4,P4 + K1,P3 + K2,P3 + K2 + K1,K1,3,K1,3 + K1,3K2,3K2 + K1,3K2 + 2K1,C4,C4 + K1,2P3。 Let G be a simple graph. The transformation graph&#160;&#160;of G is the graph with vertex set&#160;&#160;in which the vertex x and y are joined by an edge if and only if the following condi-tion holds: 1)&#160;&#160;and x and y are adjacent in G, 2)&#160;, and x and y are not adjacent in G, 3) one of x and y is in V(G) and the other is in E(G), and they are not incident in G. In this paper, it is shown that G+?? is planar if and only if&#160;&#160;or G is isomorphic to one of the following graphs: C3, C3 + K1, P4, P4 + K1, P3 + K2, P3 + K2 + K1, K1,3, K1,3 + K1, 3K2, 3K2+ K1, 3K2 + 2K1, C4, C4 + K1, 2P3.
作者 王丹 刘晓平
出处 《应用数学进展》 2018年第3期237-242,共6页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Bondy J A, Murty M R. Graph theory and Its Application, Academic Press, 1976
  • 2[2]Ales J, Bacik R. Strong elimination orderings of the total graph of a tree, Discrete Appl. Math. 1992, 39:293~295
  • 3[3]Baur D, Tindell R. The connectivity of line graphs and total graphs, J. Graph Theory 1982, 6:197~204
  • 4[4]Behzad M. Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965
  • 5[5]Behzad M, Chartrand G. Proc. Edinburgh Math. Soc. 1966/67, 15:117~120
  • 6[6]Iqbalunnisa T, Janakiraman N, Srinivasan N. Note on iteralted total graphs, J. Indian Math. Soc. New Ser. 1990, 55:67~71
  • 7[7]Gudagudi B R, Stewart M J. On n-th subdivision graphs, J. Karmatak Univ. Sci. 1974, 19:282~288
  • 8[8]Van Rooij A C M, Wilf H S. The interchange graph of a finite graph, Acta Mate. Acad. Sci. Hungar. 1965, 16:163~169

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部