期刊文献+

一类带有饱和发生率和Logistic增长的随机病毒感染模型的灭绝性及平稳分布

Extinction and Stationary Distribution of a Classic Stochastic Viral Infection Model with Saturation Rate and Logistic Growth
下载PDF
导出
摘要 本文研究了具有饱和发生率和logistic增长的随机病毒感染模型,当病毒感染细胞基本再生数0 R < 1时,确定未感染细胞的有界性和病毒感染细胞的灭绝性;当病毒感染细胞基本在生数R0 > 1时,构建适当的Lyapunov函数,确定平稳分布的充分条件。它显示了病毒感染在机体内持久性存在。
作者 罗超 张晓丹
出处 《应用数学进展》 2018年第5期609-616,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献6

二级参考文献74

  • 1王克.捕食者──食饵系统持久的充要条件及其分枝[J].生物数学学报,1995,10(2):49-53. 被引量:11
  • 2庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 3孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134. 被引量:28
  • 4Daqing Jiang,Chunyan Ji,Ningzhong Shi,Jiajia Yu.The long time behavior of DI SIR epidemic model with stochastic perturbation[J].Journal of Mathematical Analysis and Applications.2010(1)
  • 5Jiajia Yu,Daqing Jiang,Ningzhong Shi.Global stability of two-group SIR model with random perturbation[J].Journal of Mathematical Analysis and Applications.2009(1)
  • 6Hongbin Guo,Michael Y. Li,Zhisheng Shuai.A graph-theoretic approach to the method of global Lyapunov functions[J].Proceedings of the American Mathematical Society.2008(8)
  • 7Hui-Ming Wei,Xue-Zhi Li,Maia Martcheva.An epidemic model of a vector-borne disease with direct transmission and time delay[J].Journal of Mathematical Analysis and Applications.2007(2)
  • 8Tailei Zhang,Zhidong Teng.Permanence and extinction for a nonautonomous SIRS epidemic model with time delay[J].Applied Mathematical Modelling.2007(2)
  • 9Edoardo Beretta,Vladimir Kolmanovskii,Leonid Shaikhet.Stability of epidemic model with time delays influenced by stochastic perturbations 1 This paper was written during a visit of V. Kolmanovskii and L. Shaikhet in Italy (Napoli, Urbino). 1[J].Mathematics and Computers in Simulation.1998(3)
  • 10Ana Lajmanovich,James A. Yorke.A deterministic model for gonorrhea in a nonhomogeneous population[].Mathematical Biosciences.1976

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部