期刊文献+

一类非线性椭圆型边界值问题的正解

Positive Solutions for a Class of Nonlinear Elliptic Boundary Value Problem
下载PDF
导出
摘要 利用欧拉变分原理以及一个变形的山路引理,证明了一类非线性椭圆型边界值问题至少存在两个正解。
作者 曲广军
机构地区 陕西理工大学
出处 《应用数学进展》 2018年第7期857-862,共6页 Advances in Applied Mathematics
基金 国家自然科学基金项目(11401357) 陕西省教育厅科研基金项目(17JK0145)。
关键词 欧拉变分原理 变形的山路引理 正解 Ekeland’s Variantional Principle Variant Version Mountain Pass Lemma Positive Solutions
  • 相关文献

参考文献1

二级参考文献8

  • 1Ambrosetti A,Rabinowitz P H.Dual variational methods in critical point theory and applications[J].Journal of Functional Analysis,1973,14(4):349-381.
  • 2Willem M,Zou Wenming.On a schrodinger equation with periodic potential and spectrum point zero[J].Indiana University Mathematics Journal,2003,52(1):109-132.
  • 3Li Gongbao,Zhou Huansong.Dirichlet problem ofp-Laplacian with nonlinear term f(x,u)-uρ 1 at infinity[A].Brezis H,Li S J,Liu J Q,et al.Morse Theory,Minimax Theory and Their Applications to Nonlinear partial Differential Equations[C].Boston:International Press,2003:77-89.
  • 4Li Gongbao,Yang Caiyun.The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition[J].Nonlinear Analysis:Theory,Methods and Applications,2010,72(12):4602-4613.
  • 5Wang Juan,Tang Chunlei.Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations[J].Bound Value Probl,2006,2006:47275.
  • 6Schechter M.A variation of the mountain pass lemma and applications[J].Journal of the London Mathematical Society,1991,2(3):491-502.
  • 7Ladyzhenskaya O A,Uraltseva N N.Linear and Quasilinear Elliptic Equations[M].New York:Academic Press,1968.
  • 8Vázquez J L.A strong maximum principle for some quasilinear elliptic equations[J].Applied Mathematics and Optimization,1984,12(1):191-202.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部