摘要
本文通过应用高阶紧致差分格式,时间分裂法与Crank-Nicolson法等方法求解非线性薛定谔–泊松方程组。基于快速Sine变换,我们设计了一种求解离散系统的快速算法。我们用该算法分别求解一维、二维、三维的非线性薛定谔–泊松方程组。我们列举具体的数值例子,使用MATLAB软件编写出算法程序,并且通过程序计算近似误差与画出近似解的图像。数值计算结果证实了该算法在空间方向具有谱精度,也证实了该算法的高效性与稳定性。
In this paper, we have introduced fourth-order compact finite difference, the time splitting method and the Crank-Nicolson method to solve the nonlinear Schrödinger-Poisson equations. Based on fast Sine transform, we construct a fast solver for the fully discretized system. The presented numerical algorithm has been used to solve one-dimensional, two-dimensional and three-dimensional nonlinear Schrödinger-Poisson equations. We provide specific numerical examples. Through the MATLAB software, we write matlab programs based on the presented numerical algorithm, calcu-late approximated error and draw the approximated numerical solution. The numerical results prove that the presented algorithm has spectral accuracy in space direction. They also confirm its efficiency and stability.
作者
姜珊
刘荣华
马秀
王汉权
Shan Jiang;Ronghua Liu;Xiu Ma;Hanquan Wang(School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming Yunnan)
出处
《应用数学进展》
2019年第1期7-25,共19页
Advances in Applied Mathematics
基金
本文受国家自然科学基金(91430103)资助.
关键词
非线性薛定谔–泊松方程组
四阶紧致差分
Sine变换
时间分裂法
Nonlinear Schrodinger-Poisson Equations
High Order Compact Difference Scheme
SineTransform
Time Splitting Method