期刊文献+

基于矩阵循环的智能RGV的动态调度策略

Dynamic Scheduling Strategy of Smart RGV Based on Matrix Cycle
下载PDF
导出
摘要 本文主要研究一种智能RGV的动态调度问题。针对一道工序的加工作业,通过模拟分析判断出周期循环调度是最优调度。因此建立基于矩阵循环的最优调度模型,将路径规划转化为旅行商问题,利用Lingo、MATLAB求得三组参数条件下工件生产总数分别为384、347、395,系统作业效率均高达98%。针对两道工序,引入时间决定因子y表示两道工序所需时间的比值,分三种情况分析:y近似于1,y大于1和y小于1,分别建立基于时间决定因子的最优调度模型,求解可得三组参数条件下工件生产总数分别为243、226、295,系统作业效率分别达88%、82%、89%。针对故障情况,按照故障点把时间分割成若干片段,建立基于时间分段的故障降维最优调度模型,求解可得一道工序下工件生产总数分别为370、322、378,系统作业效率高达94%、91%、94%;两道工序下工件生产总数分别为212、198、250,系统的作业效率分别达77%、72%、75%。 This paper mainly studies the dynamic scheduling problem of a smart RGV.For the processing op-eration of one process,it is judged by simulation analysis that the cyclic cycle scheduling is the op-timal scheduling.Therefore,we establish an optimal scheduling model based on matrix cycle,and transform the path planning into a traveling salesman problem(TSP).Then we use Lingo and MATLAB to solve three sets of parameters,the total number of workpiece production is 384,347,and 395,respectively,and the system operation efficiency is as high as 98%.For the two processes,the time determinant y is introduced to represent the ratio of the time required for the two pro-cesses.We analyze in three cases:y is approximately 1,y is greater than 1 and y is less than 1,and respectively establish optimal scheduling model based on time determinant.The total number of workpieces produced under the three parameters of the solution is 243,226,295,and the system operating efficiency is 88%,82%,and 89%,respectively.For the fault situation,the time is divided into several segments according to the fault point,and we establish the optimal scheduling model for fault reduction dimension based on time segmentation.The total number of workpieces pro-duced in one process is 370,322,and 378,and the system operation efficiency is as high as 94%,91%,and 94%.The total number of workpieces produced in two processes is 212,198,and 250,respectively,and the system operation efficiency is 77%,72%,and 75%,respectively.
出处 《应用数学进展》 2019年第3期481-495,共15页 Advances in Applied Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部