摘要
本文在向量值Fischer-Burmeister (FB)函数和向量值Natural-Residual (NR)函数的基础上,提出一种求解二阶锥规划(SOCP)问题的光滑函数。用一个带扰动的牛顿方程组去获得搜索方向,在适当假设下,分析了算法的全局收敛和局部收敛速度,给出了数值实验结果。
Based on the Fischer-Burmeister function and the Natural-Residual function,a new smoothing Newton method is proposed for solving the second-order cone programming.This algorithm adopts a Newton equation with disturbance to gain the search direction.Under suitable assumptions,we prove that the proposed method is globally and locally quadratically convergent.Finally,some numerical results are given.
出处
《应用数学进展》
2019年第4期602-612,共11页
Advances in Applied Mathematics
基金
国家自然科学基金(11561005).