期刊文献+

离散观测下线性自吸引扩散的最小二乘估计

Least Squares Estimation for Self-Attracting Diffusion with Discrete Observations
下载PDF
导出
摘要 考虑如下分数布朗运动驱动的自吸引扩散过程XtH=BtH-θ∫0t∫0t(XsH-XuH)duds+vt,其中BtH表示Hurst指数为H∈[1/2,1)的分数布朗运动,而θ】0, v∈?为未知参数。在离散观测下,给出了这两个未知参量的最小二乘估计量和,验证了它们无相合性同时构造新的弱相合估计量。 In this paper, the self-attracting diffusion process driven by fractional Brownian motion XtH=BtH-θ∫0t∫0t(XsH-XuH)duds+vt is considered, where BtH is fractional Brownian motion with Hurst index H∈[1/2,1), and θ>0, v∈? are two unknown parameters. With discrete observation, we research the least squares estimators and for the unknown parameters. It is proved that they are not weakly consistency and we also construct some new estimators which have weakly consistency.
作者 韩婧琦
出处 《应用数学进展》 2019年第12期1993-2001,共9页 Advances in Applied Mathematics
基金 上海工程技术大学科研启动经费项目(项目编号:0244-E3-0507-19-05156)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部