期刊文献+

基于随机秩次k近邻规则的不平衡数据分类算法

An Ensemble Imbalanced Data Classification Algorithm Based on Random k-Rank Nearest Neighbor Rules
下载PDF
导出
摘要 针对不平衡数据分类问题,为提高二分类任务中少数类样本分类准确率低的问题,本文提出一种随机秩次k近邻集成学习算法——REKRNN。该方法将秩次k近邻算法应用于Bagging集成学习框架中,同时采用混合重采样和随机子空间法平衡训练集,增加基学习器差异性。仿真实验证明,该算法在处理不平衡数据分类任务时性能良好。 In this article, a random ensemble k-RNN algorithm called REKRNN is proposed to deal with the imbalanced data classification. The algorithm incorporates the k-rank nearest neighbor classifier into the frame of Bagging algorithm. At the same time, resampling techniques and random feature method are applied to deal with the imbalanced issue. We observe that the proposed method per-formed remarkably well on different imbalanced dataset. The random ensemble k-RNN algorithm can be considered as a promising tool for imbalanced classification.
出处 《应用数学进展》 2020年第5期622-629,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献3

二级参考文献41

  • 1Aask,Eikvill.Text categorization:a survey,Technical Report #941[R]. Norwegian Computing Center, 1999.
  • 2Fabrizio S.Machine learning in automated text categorization[J].J of the ACM(JACM), 2002,34( 1 ) : 1-47.
  • 3Dietterich T G.Machine learning research:four current directions[J]. AI Magazine, 1997,18(4) :97-136.
  • 4Saltow G,Wong A,Yang C.A vector space model for automatic indexing[J].Communications of the ACM, 1975,18( 11 ) :613-620.
  • 5Bryll R,Gutierrez O R,Quek F.Attribute Bagging:Improving accuracy of classifier ensembles by using random features subsets[J]. Pattern Recognition Letters,2003,36(6):1291-1302.
  • 6Langley P,Iba W.Average-case Analysis of Nearest Neighbor algorithm[C]//Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence.San Francisco,USA:Morgan Kaufmann Publishers, 1993 : 889-894.
  • 7Yang Yiming,Liu Xin.A re-examination of text categorization methods[C]//Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'99), Berkeley, California, USA : 1999 : 42-49.
  • 81.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 92.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 103.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444

共引文献431

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部