期刊文献+

带记忆项发展方程在ℝ<sup>n</sup>上的适定性

Well-Posed for Evolution Equations with Memory Term on ℝ<sup>n</sup>
下载PDF
导出
摘要 在本文中,主要研究带记忆项反应扩散方程在无界域上的适定性问题,应用经典的Galerkin方法得到了整体弱解的存在性,同时证明了解的唯一性和解对初值的连续依赖性,其中非线性项满足任意阶指数增长。 In this paper, we mainly study the suitability of the reaction-diffusion equation with memory term in the unbounded domain, obtain the existence of the global weak solution by classical Galerkin method, and prove the uniqueness of the understanding and the continuous dependence on the initial value, where the nonlinear term satisfies the exponential growth of any order.
作者 李军 张江卫
出处 《应用数学进展》 2020年第9期1486-1492,共7页 Advances in Applied Mathematics
关键词 反应扩散方程 无界域 整体弱解 任意阶指数增长 记忆项 Reaction Diffusion Equation Unbounded Domain Global Weak Solution Exponential Growth of Any Order Memory
  • 相关文献

参考文献5

二级参考文献14

  • 1ARRIETA J M, CHOLEWA J W, DLOTKO T, et al. Asymptotic Behavior And Attractors For Reaction Diiffusion Equations In Unbounded Domains[J]. J Nonlinear Anlisis TMA, 2004,56:515-554.
  • 2ARRIETA J M, MOYA N, RODRIGUES-BERNAL A. On the dimension of attractors of parabolic problem in R^N with general potentials[J]. Nonlinear Analysis, 2008,68:1082-1099.
  • 3CHEKROUN M D, PLINIO F D, GERES-ERTI N E. Asymptotics of the coleman-gurtin model[J]. Disc and Cont Dyna Syst, 2011,4(2) :351-369.
  • 4CONTI M, PATA V,SQUSAAINA M. Singular limit of differential systems with memory[J]. Indiana Univ Math, 2008, 57 : 757- 780.
  • 5PATA V. Attractors for a damped wave equation on R3 with linear memory[J]. J Adv Math Sci Appl, 2001,11:505-529.
  • 6PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J].J Adv Math Set App1, 2001,11: 505-529.
  • 7TEMAM R. Infinite dimensional dynamical systems in Mechanics and Physics[M]. Berlin:Springer-Veflag, 1997:335-379.
  • 8WANG Y, WNAG L, ZHAO W. Pullback attractors of non-autonomous reaction diffusion equations in unbounded domains[J]. J Math Appl,2007,336(1):330-347.
  • 9WANG B X. Pullback attractors for non-autonomous reaction-diffusion equations on R^n[J]. Frontiers of Mathematics in China, 2009,4(3) : 563-583.
  • 10CARABALLO T, LUKASZEWICZ G, REAL J. Pullback attractors for asymptotically compact non-autonomous dynamical systems [J]. Nonlinear Anal,2006,64(3) :484-498.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部