期刊文献+

具反馈控制和Beddington-DeAngelis功能反应的离散竞争系统的持久性

Permanence of a Discrete Competitive System with Feedback Controls and Beddington-DeAngelis Functional Response
下载PDF
导出
摘要 借助差分不等式,研究一类具Beddington-DeAngelis功能反应和反馈控制的离散非自治竞争系统的持久性,得到了一组新的持久性条件,从而改进了已有的工作。数值模拟验证了结果的可靠性。 We consider a discrete nonautonomous competitive system with Beddington-DeAngelis functional response and feedback controls. Using difference inequality theory, new conditions on permanence of the system are obtained. The results improve the recent one obtained by Zhang Jiehua. The numerical simulations show the feasibility of our results.
作者 余胜斌
出处 《应用数学进展》 2020年第10期1665-1671,共7页 Advances in Applied Mathematics
关键词 反馈控制 BEDDINGTON-DEANGELIS 持久性 离散 竞争 Feedback Controls Beddington-DeAngelis Permanence Discrete Competitive
  • 相关文献

参考文献6

二级参考文献41

  • 1鲁红英,于刚.具有时滞和反馈控制的离散Leslie系统的概周期解[J].应用泛函分析学报,2013,15(1):88-96. 被引量:3
  • 2Chen F D. Permanence in a discrete Lotka-Volterra competition model with deviating arguments [ J ]. Nonlinear Analysis:Real World Applications,2008 (9) :2 150 - 2 155.
  • 3Chen F D. Periodic solutions of a delayed predator-prey model with stage structure for predator[J]. Journal of Applied Mathematics, 2005(2) : 153 - 169.
  • 4Chen F D, Shi J. On a delayed nonautonomous ratio-dependent predator-prey model with holling type functional response and diffusion[ J]. Applied Mathematics and Computation, 2007, 192(2) : 358 - 369.
  • 5Hassell M P, Comins H N. Discrete time models for two-species competition [ J ]. Theoret Populat Biol, 1976 (99) :202 -221.
  • 6Jiang H, Rogers T D. The discrete dynamics of symmetric competition in the plane[ J ]. Math Biol, 1987 (25) :573-596.
  • 7Saito Y, Ma W, Hara T. A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays [ J ]. Math Anal Appl,2001 (256) : 162 - 174.
  • 8Aziz-Alaoui M A, Daher Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Applied Mathematics Letters, 2003, 16(7): 1069- 1075.
  • 9Yu S B. Global asymptotic stability of a predator-prey mQdel with modified Leslie-Gower and Holling-type II schemes[J]. Discrete Dynamics in Nature and Society, Volume 2012, Article ID 208167, 8 pages.
  • 10Guo H J, Song X Y. An impulsive predator-prey system with modified Leslie-Gower and Holling type Ⅱ schemes[J]. Chaos, Solitons and Fractals, 2008, 36(5): 1320-1331.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部