期刊文献+

基于多项式插值的有限差分法求解Helmholtz方程透射特征值问题 被引量:1

Solving the Transmission Eigenvalue Problem of Helmholtz Equation by Finite Difference Method Based on Polynomial Interpolation
下载PDF
导出
摘要 有限差分公式在无网格方法求解微分方程数值解中起着重要作用。本文针对Helmholtz方程透射特征值问题,通过多项式插值来创建有限差分公式。本文运用一种简单实用的节点分布,既保证多元多项式插值的唯一可解性,又使矩阵为三角矩阵,以便构造的基本多项式化为Lagrange基多项式。最后给出了外透射特征值问题的数值算例。 Finite difference formulas play an important role in the numerical solution of differential equations using meshless methods. In this paper, aiming at the transmission eigenvalue problem of Helmholtz equation, a finite difference formula is created by polynomial interpolation. Then, a simple and practical node distribution is used, which not only guarantees the unique solvability of multivariate polynomial interpolation, but also makes the matrix a triangular matrix so that the basic polynomials constructed can be transformed into Lagrange basis polynomials. Finally, a numerical example solving the eigenvalue problem of external transmission is given.
出处 《应用数学进展》 2020年第12期2236-2243,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献5

二级参考文献45

共引文献54

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部