摘要
研究了一类带有毒素生产的具有可变营养消耗率的Ivlev型恒化器系统。分析了系统平衡点的存在性及局部渐近稳定性。运用Lyapunov-LaSalle不变性原理证明了边界平衡点的全局渐近稳定性。
A Chemostat model with production of toxin, Ivlev-functional response function and variable yield is investigated. The existence and local asymptotical stability of the equilibriums are analyzed. The global asymptotical stability of the boundary equilibrium is proved by using Lyapunov-LaSalle invariance principle.
出处
《应用数学进展》
2020年第12期2277-2282,共6页
Advances in Applied Mathematics