期刊文献+

一类基于状态反馈控制的藻–鱼生态系统的动力学分析

Dynamics Analysis of an Algae-Fish Ecosystem Based on State Feedback Control
下载PDF
导出
摘要 基于“综合除藻 + 生态抑藻”相结合治理措施,构建了一类依赖状态反馈控制的藻–鱼生态系统,对其相关动力学特征进行理论分析与数值模拟,获得了系统半平凡周期解与周期解存在及其稳定的阈值条件,模拟出系统所具有的特定动力学性态,验证了理论推导结果的可行性与有效性,并进一步揭示综合治理措施的可实施性,这些研究工作为进一步探索亚热带水库蓝藻水华的综合治理提供一定的理论基础。 In the paper, on the basic of the combination of comprehensive algae removal and ecological algae suppression, an algae-fish ecosystem based on state feedback control was proposed to investigate the dynamic characteristics mathematically and numerically. The threshold conditions for the existence and stability of semi trivial periodic solution and periodic solution were obtained. The specific dynamic behaviors of the system were simulated to verify the feasibility and validity of the theoretical results and further reveal the feasibility of comprehensive management measures. Finally, it is our expectation that these studies can provide a theoretical basis for further exploring the comprehensive management of cyanobacterial blooms in subtropical reservoirs.
机构地区 温州大学 温州大学
出处 《应用数学进展》 2021年第2期373-385,共13页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献25

  • 1Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1976.
  • 2Clark C W. Bioeconomic Modeling and Resource Management [C]//Levin S A, Hallam T G, Grose L J eds. Applied Mathematical Ecology, New York : Springer-Verlag, 1989.
  • 3Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1990.
  • 4GohB S. Managenment and Analysis of Biological Populations[M]. Amsterlan:Elsevier Scientific Publishing Company, 1980.
  • 5Bonotto E M. Flows of Characteristic in Impulsive Semidynamical Systems [J]. J. Math Anal App1,2007 ,332 :81-96.
  • 6Bonotto E M. LaSalle' s Theorems in Impulsive Semidynamical Systems[J]. Cadernos de Matem Atica,2008,9:157-168.
  • 7Bonotto E M, Federson M. Limit Sets and the Poincar6-Bendixson Theorem in Impulsive Semidynamical Systems [J]. J Differential Equations ,2008,244:2334-2349.
  • 8Bonotto E M, Federson M. Poisson Stability for Impulsive Semidynamical Systems [J]. Nonlinear Analysis,2009,71 : 148-6156.
  • 9Bonotto E M, Federson M. Topological Conjugation and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Math Anal App1,2007,326:869-881.
  • 10S K Kaul. Stability and Asymptotic Stability in Impulsive Semidynamical Systems [J]. J Appl Math. Stochastic Anal, 1994, 7(4) :509-523.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部