期刊文献+

一种带分布式自适应时延的粒子群算法 被引量:2

A Particle Swarm Optimization Algorithm with Distributed Adaptively Weighted Delays
下载PDF
导出
摘要 针对粒子群算法(PSO)容易陷入局部最优值、收敛精度低等缺陷,提出一种新的带分布式自适应时延的粒子群算法(PSO-DW)。改进的算法主要在RODDPSO算法的基础上考虑时延的时变性和种群的进化状态,以平衡算法的全局搜索和局部搜索能力,降低早熟收敛的可能性,提高算法的收敛速度和精度。主要思想:1) 在引入了分布式时延的速度更新公式中,每个时延项配以自适应权重,2) 引入通过当前状态和概率转移矩阵预测下一进化状态的预测机制,3) 分布式时延的强度因子由预测状态所确定。在九个基准函数上与四个算法作对比的实验结果表明,改进后的算法在寻优质量、稳定性、收敛速度等方面更具优越性。 A new particle swarm optimization algorithm (PSO) with distributed adaptively weighted delays (PSO-DW) has been proposed to overcome the defects of the PSO algorithm, such as falling into local optimal value, low convergence accuracy. Based on the RODDPSO algorithm, the improved algorithm further considers the time-varying delays and the evolutionary states of the population, so that it can balance the global search and local search ability of the algorithm, reduce the possibility of premature convergence, and improve the convergence speed and accuracy of the algorithm. The main ideas are: 1) each delay is equipped with adaptive weight in the velocity update formula;2) prediction mechanism of the next evolutionary state has been introduced by the current state and probability transfer matrix;3) intensity factor of the distributed delay is determined by the prediction state. The experimental results show that the improved algorithm has more advantages in optimizing quality, stability and convergence speed by comparing with four algorithms on nine benchmark functions.
出处 《应用数学进展》 2021年第3期753-762,共10页 Advances in Applied Mathematics
  • 相关文献

参考文献4

二级参考文献34

  • 1潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 2Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 3Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 4Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 5Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 6Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 7Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.
  • 8Eberhart R, Shi Y. Tracking and optimizing dynamicsystems with particle swarms [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA: IEEE, 2001. 94-100.
  • 9纪震,廖惠连,吴青华.粒子群优化算法及应用[M].北京:科学出版社,2009:16-80.
  • 10ZHANG L P, YU H J, HU S X. A new approach to improve particle swarm optimization EG3. LNCS 2723: Proceedings of the 2003 International Conference on Genetic and Evolutionary Computation. Chicago: Springer Verlag, 2006 : 1036-1043.

共引文献329

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部