期刊文献+

非线性分数阶泛函微分方程组边值问题的可解性

Solvability for Boundary Value Problems of Nonlinear Fractional Functional Differential Systems
下载PDF
导出
摘要 本文研究了一类非线性分数阶泛函微分方程组边值问题正解的存在性。首先,将所研究的问题转化为积分方程形式,通过做变换得到等价积分方程。然后建立比较定理,运用上下解方法证明了边值问题正解的存在性。最后给出一个例子说明结论的适用性。 In this paper, the existence of positive solutions for a class of boundary value problems of nonlinear fractional functional differential system with time delays is studied. Firstly, the problems studied in this paper are transformed into integral equations, and the equivalent integral equation is obtained by transformation. Secondly, a comparison theorem is established and the existence of positive solutions of boundary value problem is proved by using upper and lower solution method. Finally, an example is given to illustrate the applicability of the conclusion.
作者 全欢
出处 《应用数学进展》 2021年第4期1039-1052,共14页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献12

  • 1Lakshmikantham, V. & Leela, S., Existence and monotone method for periodic solutions of first-order differential equations [J], J. Math. Anal. Appl., 91(1983), 237-243.
  • 2Lakshmikantham, V. & Leela, S., Remarks on first and second order periodic boundary value problems [J], Nonlinear Anal., 8(1984), 281-287.
  • 3Leela, S. & Oguztoreli, M. N., Periodic boundary value problem for differential equations with delay and monotone iterative method [J], J. Math. Anal. Appl., 122(1987),301-307.
  • 4Haddock, J. R. & Nkashama M. N., Periodic boundary value problems and monotone iterative methods for functional differential equations [J], Nonlinear Anal., 22(1994),267-276.
  • 5Eduardo, L. & Nieto, J. J., Periodic boundary value problems for a class of functional differential equations [J], J. Math. Anal. Appl., 200(1996), 680-686.
  • 6Jiang Daqing & Wei Junjie, Monotone method for first-and second-order periodic boundary value problems and periodic solutions of functional differential equations[J], Nonlinear Anal., 50(2002), 885-898.
  • 7Jiang Daqing, Nieto, J. J. & Zuo Wenjie, On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations [J], J. Math. Anal. Appl., 289(2004), 691-699.
  • 8Lakshmikantham, V. & Zhang, B. G., Monotone iterative technique for delay differential equations [J], Appl. Anal., 22(1986), 227-233.
  • 9Hristova, S. G. & Bainov, D. D., Application of the monotone iterative techniques of Lakshmikantham to the solution of the initial value problem for functional differential equations [J], J. Math. Phys. Sci., 24(1990), 405-413.
  • 10Nieto, J. J., Yu, J. & Yan, J. R., Monotone iterative method for functional differential equations [J], Nonlinear Anal., 32(1998), 741-747.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部