期刊文献+

交错代数双模的无穷小形变

Infinitesimal Deformation of the Bimodules over Alternative Algebras
下载PDF
导出
摘要 本文主要研究交错代数双模的无穷小形变。讨论了交错代数的形变,给出了交错代数双模的无穷小形变的定义,讨论两个无穷小形变的等价条件和双模的无穷小形变是平凡的条件。文章的最后给出了交错代数上Nijenhuis算子的定义,并且找到交错代数双模的平凡形变与Nijenhuis算子结构的关系。 In this paper, we study the infinitesimal deformation of the bimodules over alternative algebras. The deformation of alternative algebra is discussed, and the definition of infinitesimal deformation of the bimodules over alternative algebras is given. The equivalent conditions of two infinitesimal deformations are discussed. We also discuss the conditions that make infinitesimal deformation of the bimodules be trivial. At the end of the paper, the Nijenhuis operators of alternative algebras are defined, and the relationship between trivial deformation and Nijenhuis operator structure is also found.
作者 臧蕊
出处 《应用数学进展》 2021年第5期1541-1549,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献6

  • 1Gerstenhaber M, Schack S D. Algebraic cohomology and deformation theory[C]. Deformation theory of algebras and structures and applications[A]. Dordrecht: Kluwer Academic Publishers, 1988, 11- 264.
  • 2Kubo Fujio. Finite-dimensional non-commutative Poisson algebras[J]. Journal of Pure and Applied Algebra, 1996, 113: 307-314.
  • 3Kubo Fujio. Non-commutative Poisson algebra structures on affine Kac-Moody algebras[J]. Journal of Pure and Applied Algebra, 1998, 126: 267-286.
  • 4Jin Quanqin, Tong Jie. Poisson algebra structures on toroidal Lie algebras[J]. Chin. Ann. Math. Ser. A, 2007, 28(1): 57-70.
  • 5Eswara R S. Irreducible representations for toroidal Lie algebras[J]. J. Pure Appl. Algebra, 2005, 202(1): 102-117.
  • 6Tong Jie, Jin Quanqin. Non-commutative Poisson algebra structures on the Lie algebras son(CQ)[J]. Algebra Colloquium, 2007, 14(3): 521-536.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部