期刊文献+

改进自适应蚁群算法移动机器人避障路径规划

Improved Adaptive Ant Colony Algorithm for Obstacle Avoidance Path Planning of Mobile Robots
下载PDF
导出
摘要 针对传统蚁群算法在复杂网络路径规划中收敛速度慢和易陷入局部最优解的问题,本文在蚁群算法状态转移概率公式的基础上考虑了安全性因素和加权因子,在全局信息素更新过程中引入自适应动态因子,提出改进的自适应蚁群算法以更快地获取全局最优解。将改进自适应蚁群算法应用于移动机器人的路径规划,使用可视图法描绘出障碍物图像,通过真实数据进行实验分析,证明了改进自适应蚁群算法比传统蚁群算法、改进蚁群算法的收敛速度更快,路径更优,在有障碍物环境中也能合理地进行路径规划。 In view of the traditional ant colony algorithm in path planning in complex network slow convergence speed and fall into local optimal solution of the problem, based on the ant colony algorithm on the basis of state transition probability formula considering the safety factor and the weighting factor, in the process of global pheromone update introduced adaptive dynamic factor, this paper puts forward the improved adaptive ant colony algorithm to obtain the global optimal solution more quickly. Improved adaptive ant colony algorithm was applied to mobile robot path planning, image view method was used to depict the obstacles, experimental analysis, through the real data proves that the improved adaptive ant colony algorithm has a faster speed, better path than the traditional ant colony algorithm and the improved ant colony algorithm convergence, with an obstacle in the environment can reasonably make path planning.
出处 《应用数学进展》 2021年第6期2073-2082,共10页 Advances in Applied Mathematics
  • 相关文献

参考文献10

二级参考文献97

  • 1姚克明,刘燕斌,陆宇平,郭豫荣.火星探测无人机建模与拉起平飞控制[J].南京理工大学学报,2013,37(6):950-954. 被引量:2
  • 2朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898-1906. 被引量:50
  • 3付宇,肖健梅.动态自适应蚁群算法求解TSP问题[J].计算机辅助工程,2006,15(4):10-13. 被引量:5
  • 4申晓宁,郭毓,陈庆伟,胡维礼.多目标遗传算法在机器人路径规划中的应用[J].南京理工大学学报,2006,30(6):659-663. 被引量:19
  • 5王俭,肖金球,赵鹤鸣.目标信号导航的机器人路径二次优化[J].电子测量与仪器学报,2007,21(5):73-76. 被引量:2
  • 6Martnez P,Castillo O,Soria J,et al.Optimal design ofmembership functions of a fuzzy logic controller foran autonomous wheeled mobile robot using ant colonyoptimization[J].Journal of Automation,Mobile Robotics& Intelligent Systems,2010,4(1):3-16.
  • 7Purian F K,Sadeghian E.Mobile robots path planningusing ant colony optimization and fuzzy logic algorithmsin unknown dynamic environments[C]//Proceedings ofInternational Conference on Control,Automation,Roboticsand Embedded Systems,2013.
  • 8Socha K,Dorigo M.Ant colony optimization for continuousdomains[J].European Journal of Operational Research,2008,185(3):1155-1173.
  • 9Michalis M,Shengxiang Y.A memetic ant colony optimizationalgorithm for the dynamic travelling salesmanproblem[J].Soft Computing-A Fusion of Foundations,Methodologies & Applications,2011,15(7):1405-1425.
  • 10Zhiping Z,Yunfeng N,Gao M.Enhanced ant colony optimizationalgorithm for global path planning of mobilerobots[C]//Proceedings of International Conference onComputational and Information Sciences,2013:698-700.

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部