期刊文献+

一类具有非线性感染率的随机SIQS传染病模型解的渐近行为

Asymptotic Behavior of the Solution of a Random SIQS Epidemic Model with Nonlinear Infection Rate
下载PDF
导出
摘要 本文研究了一类带有非线性感染率的随机SIQS传染病模型。 首先证明了该随机SIQS传染病模型对正的初始条件存在着唯一的全局正解。 然后,通过构造适当的Lyapunov函数并结合伊藤公式的应用,对该随机SIQS传染病模型的解在无病平衡点以及地方病平衡点附近的渐进行为进行了分析讨论。 This paper studies a kind of random SIQS infectious disease model with nonlinear infection rate. First, it is proved that the random SIQS infectious disease model has a unique global positive solution to the initial conditions of the positive. Then, by constructing an appropriate Lyapunov Function and combined with the application of Ito’s formula, the gradual behavior of the solution of the random SIQS infectious disease model near the disease-free balance point and the endemic disease balance point is analyzed and discussed.
作者 刘向荣
机构地区 中原科技学院
出处 《应用数学进展》 2021年第7期2359-2368,共10页 Advances in Applied Mathematics
  • 相关文献

参考文献3

二级参考文献26

  • 1HETHCOTE H W,MA Z E,LIAO S B.Effects of quarantine in six endemic models for infectious diseases[ J ].Mathematical Biosciences,2002,180(1/2):141-160.
  • 2LIPSITCH M,COHEN T,COOPER B,et al.Transmission dynamics and control of severe acute respiratory syndrome [ J ].Science,2003,300(5627):1966-1970.
  • 3LLOYD-SMITH J O,GALVANI A P,GETZ W M.Curtailing transmission of severe acute respiratory syndrome within a community and its hospital[J].Proceedings of the Royal Society B:Biological Sciences,2003,270(1528):1979-1989.
  • 4MENA-LORCA J,HETHCOTE H W.Dynamic models of infectious diseases as regulators of population sizes[ J ].Journal of Mathematical Biology,1992,30(7):693-716.
  • 5CAPASSO V,SERIO G.A generalization of the Kermack-McKendrick deterministic epidemic model[ J].Mathematical Biosciences,1978,42(1/2):43-61.
  • 6HOU J,TENG Z.Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates[ J ].Mathematics and Computers in Simulation,2009,79(10):3038-3054.
  • 7LIU W M,LEVIN S A,IWASA Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[ J ].Journal of Mathematical Biology,1986,23(2):187-204.
  • 8HUANG G,TAKEUCHI Y,MAW B,et al.Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J].Bulletin of Mathematical Biology,2010,72:1192-1207.
  • 9XU R,MA Z E.Global stability of a SIR epidemic model with nonlinear incidence rate and time delay[J].Nonlinear Analysis:Real World Applications,2009,10(5):3175-3189.
  • 10SAFI M A,GUMEL A B.The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay [J].Nonlinear Analysis:Real World Applications,2011,12(1):215-235.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部