期刊文献+

脉冲释放沃尔巴克氏体感染雄蚊模型动力学分析

Dynamic Analysis of the Wolbachia-Infected Male Mosquitoes Model by Pulsed Release
下载PDF
导出
摘要 本文以昆虫不相容技术为背景研究了具有阶段和性别结构的野生与不育蚊子相互作用脉冲模型。其目的是研究采用周期释放不育蚊子的方法控制野生蚊子数量的可行性。首先通过动力学分析得到了系统平凡周期解的存在性,并分别利用Floquet理论和Lyapunov稳定性定理给出了相应的局部稳定性条件和全局稳定性条件,从而验证了脉冲释放不育蚊子可以使野生蚊子灭绝。其次得到了系统非平凡周期解的存在性,并在具体参数下讨论了其局部稳定性,发现系统在一定阈值条件下出现平凡周期解和非平凡周期解共存的双稳现象,这表明脉冲控制也可以在不消灭野生蚊子的情况下控制它们的数量。最后利用数值模拟验证了相关理论结果。 In this paper, we study a wild and sterile mosquito interaction impulsive model with stage-structure and sex-structure based on insect incompatibility technology. The aim is to study the feasibility of controlling the number of wild mosquitoes by releasing sterile mosquitoes periodically. Firstly, the existence of trivial periodic solutions is obtained by dynamic analysis, and the corresponding local stability and global stability conditions are proved by Floquet theory and Lyapunov stability theorem respectively. The results show that the pulsed release of sterile mosquitoes could make the wild mosquitoes extinct. Then, the existence of nontrivial periodic solutions is obtained, and its local stability is discussed under specific parameter values. It is found that the system has the bistable phenomenon in which trivial periodic solution and non-trivial periodic solution coexist under certain threshold conditions. This shows that the population of mosquitoes can be controlled by pulse control without eliminating them. Finally, numerical simulation verifies the theoretical results.
作者 庞轶友 王帅
机构地区 长春理工大学
出处 《应用数学进展》 2021年第10期3505-3517,共13页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献31

  • 1Bian G W, Xu Y, Lu P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog, 2010, 6:e1000833.
  • 2Calisher C H. Persistent emergence of dengue. Emerg Infect Dis, 2005, 11:738-739.
  • 3Caspari E, Watson G S. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 1959, 13: 568-570.
  • 4Casten R G, Holland C J. Stability properties of solutions to systems of reaction-diffusion equations. SIAM J Appl Math, 1977, 33:353-364.
  • 5Du Y H, Wang M X. Asymptotic behavior of positive steady-states to a predator-prey model. Proc Roy Soc Edinburgh Sect A, 2006, 136:759-778.
  • 6Farkas J Z, Hinow P. Structured and unstructured continuous models for Wolbachia infections. Bull Math Biol, 2010, 72:2067-2088.
  • 7Friedman A. Partial Differential Equations of Parabolic Type. Englewood Cliffs, N J: Prentice-Hall, 1964.
  • 8Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, vol. 840.
  • 9Berlin-New York: Springer-Verlag, 1981 Hirsch M W, Smale S, Devaney R. Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2nd ed. Orlando: Academic Press, 2003.
  • 10Hoffmann A A, Montgomery B L, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011, 476:454-457.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部