摘要
设R是一个有限环。本文基于代数图论的基本事实,研究一类重要的图族的Cayley性质,构造了代数图BΓn(R;f2, ..., fn)的一个无限子族,其中每个图都是Cayley图,在此基础上进一步考虑这类代数图的最大圈。
Let R be a finite ring. Based on the basic facts of algebraic graph theory, this paper studies the Cayley properties of an important family of graphs, and constructs an infinite subfamily of algebraic graphs BΓn(R;f2, ..., fn), in which each graph is Cayley graph. On this basis, the maximal cycle of this kind of algebraic graph is further considered.
出处
《应用数学进展》
2021年第11期3618-3622,共5页
Advances in Applied Mathematics