期刊文献+

H-Toeplitz算子的代数性质 被引量:1

Algebraic Properties of H-Toeplitz Operator
下载PDF
导出
摘要 本文主要研究 Bergman 空间上 H-Toeplitz 算子的代数性质。第一章介绍了相关的研究背景、基本概念及一些主要结果。第二章给出了本文主要结果的证明,证明了拟齐次符号 H-Toeplitz 算子的复对称性。 In this paper, we mainly study the algebraic properties of H-toeplitz operators on Bergman Spaces. In Chapter 1, we introduce the related research background, basic concepts and some main results. In Chapter 2, the proof of the main results of this paper is given, and the complex symmetry of quasi homogeneous signed H-toeplitz operators is proved.
作者 梁金金
机构地区 浙江师范大学
出处 《应用数学进展》 2021年第12期4489-4497,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献20

  • 1Brown A, Halmos P R. Algebraic properties of Toeplitz operators [J]. J Reine Angew Math, 1964, 213:89-102.
  • 2Martfnez-Avendafio R. When do Toeplitz and Hankel operators commute? [J]. Integral Equations Operator Theory, 2000, 37:341-349.
  • 3Guo Kunyu, Zheng Dechao. Essentially commuting Hankel and Toeplitz operators [J]. J Funct Anal, 2003, 201:121-147.
  • 4CuSkovid Zeljko, Rao N V. Mellin transform, monomial symbols, and commuting Toeplitz operators [J]. J Funct Anal, 1998, 154:195-214.
  • 5CuSkovid Zeljko, Louhichi I. Finite rank commutators and semicommutators of quasi- homogeneous Toeplitz operators [J]. Complex Anal Oper Theory, 2008, 2:429-439.
  • 6Ding Xuanhao. The finite rank perturbations of the produce of Hankel and Toeplitz operators [J]. J Math Anal Appl, 2008, 337:726-738.
  • 7Ding Xuanhao, Zheng Dechao. Finite rank commutator of Toeplitz operators or Hankel operators [J]. Houston J Math, 2008, 34:1099-1119.
  • 8Lee Y J. Commuting Toeplitz operators on the Hardy space of the bidisk [J]. J Math Anal Appl, 2008, 341:738-749.
  • 9Lee Y J. Commuting Toeplitz operators on the Hardy space of the polydisk [J]. Proc Amer Math Soc, 2010, 138:189-197.
  • 10Gu Caixing. Some algebraic properties of Toeplitz and Hankel operators on polydisk [J]. Arch Math, 2003, 80:393-405.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部