摘要
本文采用守恒型差分方法求解一类空间分数阶Buegers方程,其中时间方向和空间方向分别采用Crank-Nicolson格式和有限差分法离散。实验结果表明,该方法在时间和空间上的收敛速度都为二阶。
This paper develops a conservative discretization for a space-fractional Burgers equation, in which the temporal Crank-Nicolson scheme and spacial finite difference method are used. Numerical test shows that the convergence of this method is of order 2 in time and space.
出处
《应用数学进展》
2022年第1期219-223,共5页
Advances in Applied Mathematics