摘要
本文证明了具有大初值的一维可压缩磁流体动力学(MHD)方程组的初边值问题的密度具有正上界。在无穷远处存在真空的情况下,利用精确的能量估计和方程结构可以得到方程组的密度具有正上界。
In this paper, we prove that the density of the initial boundary value problem of one-dimensional compressible MHD equations with large initial values has a positive upper bound. In the case of vacuum at infinity, the density of the equations has a positive upper bound using accurate energy estimation and the structure of the equations.
出处
《应用数学进展》
2022年第4期1945-1954,共10页
Advances in Applied Mathematics