期刊文献+

有限资源下杀虫剂具有残留作用的害虫综合控制的数学模拟研究

Mathematical Simulations of Integrated Pest Control with Pesticide Residues under Limited Resources
下载PDF
导出
摘要 本文考虑到杀虫剂的残留作用、喷洒前后对种群的作用方式的改变以及天敌资源的有限性,首先建立并系统地研究了资源有限下杀虫剂具有残留作用的固定时刻的害虫控制切换系统,分析关键参数对害虫灭绝阈值的影响;其次建立资源有限下依赖于害虫种群数量的状态害虫控制切换系统,通过数值模拟分析在规定的时间内影响杀虫剂的使用频率的因素。 Considering the residual effect of pesticides, the change of the mode of action of the population be-fore and after spraying pesticides and the limitation of natural enemy resources, firstly, a fixed-time pest control switching system with residual effect of pesticides under limited resources is estab-lished and systematically studied, and the influence of key parameters on the pest eradication threshold is analyzed. Secondly, a state pest control switching system that is dependent on the amount of pest populations under limited resources is established, and the factors that affect the frequency of pesticide use in the specified time are analyzed by numerical simulations.
机构地区 鞍山师范学院
出处 《应用数学进展》 2022年第7期4509-4518,共10页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献20

  • 1Kooij, R.E., Zegeling, A. A predator-prey model with Ivlev's functional response, d. Math. Anal Appl.,198:473-489 (1996).
  • 2Lakmeche, A. Arino, O. Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynamics of Continuous, Discrete and Impulsive System, 7:265-287(20OO).
  • 3Lakshmikantham, V., Bainov, D., Simeonov, P. Theory of impulsive differential equations. World Scientific,Singapore, 1989.
  • 4Parker, F.D. Management of pest populations by manipulating densities of both host and parasites through periodic releases. In: Huffaker, C. B., Ed. Biological control, Plenum Press, New York, 1971.
  • 5Saito, Y., Hara, T., Ma, W. Harmless delays for permanence and impersistence of a Lotka-Volterra discrete predator-prey svstem. Nonlinear Analysis.. 50:703-715 (2002).
  • 6Simeonov, P., Bainov, D. The second method of Liapunov for systems with impulsive effect. Tamkang J.Math., 16:247-263 (1985).
  • 7Sugie, J. Two-Parameter bifurcation in a predator-prey system of Ivlev type. J. Math. Anal. Appl., 217:349-371 (1998).
  • 8University of California, Division of Agriculture and Natural Resources. Integrated Pest Management for Alfafa hay. Publication 3312, Publications. Division of Agriculture and Nature Resources, University of Califania, 6701 Sail Pablo Avenue, Oakland CA 94608 1239, 1981.
  • 9Van Lenteren, J.C. Measures of success in biological control of anthropoids by augmentation of natural enemies. In: S. Wratten, G. Gurr(eds.), Measures of success in biological control, Kluwer Academic Publishers, Dordrecht, 2000.
  • 10Van Lenteren, J.C. Integrated pest management in protected crops. In: D.Dent(ed.), Integrated pest management, Chapman & Hall, London, 1995.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部