摘要
本文证明了当γ=β+n/p时,与θ-型Calderón-Zygmund算子和Lipschitz函数相关的Toeplitz型算子是从Lebesgue空间Lp(Rn)到Campanato空间Cp,β(Rn)有界的。
In this paper, we prove that the Toeplitz type operator related to the θ-type Calderón-Zygmund op-erator and Lipschitz function is bounded from Lebesgue space Lp(Rn) to Campanato space Cp,β(Rn) when γ=β+n/p .
出处
《应用数学进展》
2022年第10期7392-7399,共8页
Advances in Applied Mathematics