期刊文献+

一类对应特殊图的链环的Jones多项式

The Jones Polynomials of a Kind of Links Corresponding to Special Graphs
下载PDF
导出
摘要 Tutte多项式在空间图理论中占据中心地位,本文给出一类特殊图,研究了这类图的Tutte多项式,并且借助Jones多项式与Tutte多项式间的关系计算了这类特殊图对应的链环的Jones多项式,这不仅为链环的Jones多项式的计算提供了新路径,还在纽结理论与空间图理论之间架起一座桥梁。 Tutte polynomial plays a central role in spatial graph theory, in this paper, given a special type of graphs, we study the Tutte polynomial of the graph and calculate the Jones polynomial of the link corresponding to this special graph with the help of the relationship between the Jones polynomial and the Tutte polynomial, which not only provides a new path for the calculation of the Jones poly-nomial of links, but also builds a bridge between the knot theory and spatial graph theory.
作者 祁禄
机构地区 辽宁师范大学
出处 《应用数学进展》 2022年第10期7440-7450,共11页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献6

  • 1Jones V F R. Hecke algebra representations of braid groups and link polynomials[J].{H}ANNALS OF MATHEMATICS,1987,(02):335-388.
  • 2Adams C C. The knot book:An Elementary Introduction to the Mathematical Theory of Knots[M].Providence,Rhode Island:American Mathematical Society,2004.
  • 3Lickorish W B R,Millett K C. The reversing result for the Jones polynomial[J].{H}Pacific Journal of Mathematics,1986,(01):173-176.
  • 4Murasugi K. Knot Theory and Its Applications[M].Boston,Basel,Berlin..Birkh(a)user,1996.
  • 5Kauffman L H. On knots(Annals of Mathematics Studies 115)[M].{H}Princeton,New Jersey:Princeton University Press,1987.
  • 6陶志雄.颠倒分支定向的链环的Jones多项式[J].浙江科技学院学报,2011,23(6):443-444. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部