摘要
Tutte多项式在空间图理论中占据中心地位,本文给出一类特殊图,研究了这类图的Tutte多项式,并且借助Jones多项式与Tutte多项式间的关系计算了这类特殊图对应的链环的Jones多项式,这不仅为链环的Jones多项式的计算提供了新路径,还在纽结理论与空间图理论之间架起一座桥梁。
Tutte polynomial plays a central role in spatial graph theory, in this paper, given a special type of graphs, we study the Tutte polynomial of the graph and calculate the Jones polynomial of the link corresponding to this special graph with the help of the relationship between the Jones polynomial and the Tutte polynomial, which not only provides a new path for the calculation of the Jones poly-nomial of links, but also builds a bridge between the knot theory and spatial graph theory.
出处
《应用数学进展》
2022年第10期7440-7450,共11页
Advances in Applied Mathematics