期刊文献+

基于<sub>2,1</sub>范数的超图正则化非负矩阵分解

Hypergraph Regular Nonnegative Matrix Factorization Based on <sub>2,1</sub> Norms
下载PDF
导出
摘要 图学习的方法只考虑了样本间的关系,忽略了样本间的高维结构,基于欧氏距离的非负矩阵模型易受到噪声和异常值的影响。为解决以上问题,给出一种基于L2,1范数的超图正则化非负矩阵分解(L2,1HNMFL)方法,并给出了算法的更新规则。通过在COIL20和ORL经典数据集上与其他算法的比较验证了该算法的有效性。 The graph learning method only considers the relationship between samples, but ignores the high-dimensional structure between samples. The non-negative matrix model based on Euclidean distance is easily affected by noise and outliers. To solve the above problems, a hypergraph regu-larization nonnegative matrix factorization (L2,1HNMFL) method based on L2,1 norm is presented, and the updating rules of the algorithm are given. The effectiveness of this algorithm is verified by comparing it with other algorithms on classical data sets COIL20 and ORL.
作者 文学春
出处 《应用数学进展》 2023年第1期451-458,共8页 Advances in Applied Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部