期刊文献+

简述特征选择 被引量:1

Brief Description of Feature Selection
下载PDF
导出
摘要 特征选择是通过寻找对于目标函数有突出贡献的特征来达到降维的效果,该方法希望可以尽可能多的去掉冗余特征,能够更加准确合理地解释这些数据。研究者们对于特征选择的研究历史也比较悠久,从而特征选择也变得越来越准确、有效。本文介绍特征选择概念之后,简单综述了特征选择在方法和理论上的发展,并且重点介绍了支持向量机在特征选择上的应用。 Feature selection is to reduce dimension by finding features that contribute significantly to the ob-jective function. This method hopes to remove redundant features as much as possible and inter-pret these data more accurately and reasonably. Researchers have a long history of research on feature selection, so feature selection is becoming more and more accurate and effective. After in-troducing the concept of feature selection, this paper briefly reviews the development of feature se-lection methods and theories, and focuses on the application of support vector machines in feature selection.
作者 赵锦芳
出处 《应用数学进展》 2023年第3期1188-1194,共7页 Advances in Applied Mathematics
  • 相关文献

参考文献8

二级参考文献56

  • 1钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 2[1]Demeulemeester E, Herroelen W. A branch-and-bound procedure for the multiple resource-constrained project scheduling problem [ J ]. Management Science, 1992, 38 ( 12 ):1803-1818.
  • 3[2]Demeulemeester E, Herroelen W. New benchmark results for the resource-constrained project scheduling problem[ J].Management Science, 1997, 43 ( 11 ): 1485-1492.
  • 4[3]Mingozzi A, Maniezzo V, RicciardelliS, et al. An exa ct algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation [ J ]. Management Science, 1998, 44(5) :714-729.
  • 5[4]Brucker P, Knust S, Schoo A, et al. A branch and bound algorithm for the resource-constrained project scheduling problem[J]. Eur J of Ops Res, 1998, 107:272-288.
  • 6H Liu,R Setiono. A Probabilistic Approach to Feature Selection: A filter Solution [A]. Proc of Int' 1 Conf on Machine Learning[C]. 1995. 319-327.
  • 7B Chakraboriy. Genetic Algorithm with Fuzzy Fitness Function for Feature Selection[A]. Proc of the 2002 IEEE International Symp on Industrial Electronics. Vol 1[C]. 2002. 315 - 319.
  • 8Jos Bins,Bruce A Draper. Feature Selection from Huge Feature Sets[A]. Proc of the 8th IEEE Conf on Computer Vision and Pattern Recognition. Vol 2[C]. 2001. 159-165.
  • 9Sanmay Das. Filters,Wrappers and a Boosting Based Hybrid for Feature Selection[A]. Proc of the 8th Int'l Conf on Machine Lemrning[C]. 2001.74-81.
  • 10Huang Yuan, Shian-Shyong Tseng, Wu Gangshan, et al. A Two-Phase Feature Selection Method Using Both Filter and Wrapper[A]. Proc of 1999 IEEE Inter'l Conf on Systems,Man, and Cybernetics. Vol 2[C]. 1999. 132 - 136.

共引文献119

同被引文献26

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部