期刊文献+

四阶特征值问题基于降阶格式的一种有效的Legendre-Galerkin逼近

An Efficient Legendre-Galerkin Approximation Based on Reduced Order Scheme for Fourth Order Eigenvalue Problems
下载PDF
导出
摘要 本文提出了四阶特征值问题基于降阶格式的一种有效的Legendre-Galerkin逼近。首先,我们引入了一个辅助函数,将原问题转化为一个二阶混合格式。通过引入一些适当的Sobolev空间,其相应的变分形式被建立,并在解足够光滑条件下证明了其等价性。其次,基于Legendre多项式的正交性质,两组紧凑的基函数被构造,并导出具有稀疏系数矩阵的线性特征系统。最后,我们给出了两个数值例子,数值结果表明了算法的收敛性与高精度。 In this paper, an efficient Legendre-Galerkin approximation based on reduced order scheme for fourth order eigenvalue problems is presented. First, we introduce an auxiliary function to trans-form the original problem into a second order mixed format. By introducing some suitable Sobolev Spaces, the corresponding variational form is established, and its equivalence is proved if the solu-tion is sufficiently smooth. Secondly, based on the orthogonal property of Legendre polynomials, two groups of compact basis functions are constructed, and a linear characteristic system with sparse coefficients matrix is derived. Finally, we give two numerical examples, and the numerical results show the convergence and high precision of the algorithm.
作者 魏涛
出处 《应用数学进展》 2023年第4期1981-1988,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部