期刊文献+

三次B样条曲线插值的LUTS-PIA算法

LUTS-PIA Algorithm for Cubic B-Spline Curve Interpolation
下载PDF
导出
摘要 本文研究了三次B样条曲线插值问题。首先,我们将配置矩阵进行下上三角分裂,然后基于该下上三角分裂提出了(Lower Upper Triangular Splitting-Progressive Iterative Approximation) LUTS-PIA算法,并证明了该算法的收敛性。最后,数值实验结果表明:LUTS-PIA算法明显优于(Hermitian and Skew-Hermitian Splitting-Progressive Iterative Approximation) HSS-PIA算法。 The cubic B-spline curve interpolation problem is studied in this paper. First, we split the allocation matrix into lower and upper triangular parts called lower upper triangular splitting (LUTS). Based on this LUTS, we propose lower upper triangular splitting-Progressive Iterative Approximation (LUTS-PIA) algorithm and prove its convergence. Finally, we test some numerical experiments which show that LUTS-PIA has a better convergence behavior than the HSS-PIA.
出处 《应用数学进展》 2023年第10期4216-4223,共8页 Advances in Applied Mathematics
  • 相关文献

参考文献5

二级参考文献75

  • 1蔺宏伟.几何迭代法及其应用综述[J].计算机辅助设计与图形学学报,2015,27(4):582-589. 被引量:36
  • 2史利民,王仁宏.NURBS曲线曲面拟合数据点的迭代算法[J].Journal of Mathematical Research and Exposition,2006,26(4):735-743. 被引量:22
  • 3徐岗,汪国昭.带局部形状参数的三次均匀B样条曲线的扩展[J].计算机研究与发展,2007,44(6):1032-1037. 被引量:16
  • 4Peaccman D W, Rachford H H ,Jr. The numerical solution of par- abolic and elliptic differential equations [ J ]. J Soc Indust and Appl Math,1955,3(1) : 28 -41.
  • 5Bai Z Z, Golub G H, Nq M K. Hermitian andskew-Hermitian splitting methods for non-Hermitlan positive definite linear sys- tems [ J ]. J Matrix Anal and Appl,2003,24 (3) : 603 -626.
  • 6Bai Z Z,Golub G H, Lu L Z, et al. Block triangular and skew- Hermitian splitting methods forpositive-definite linear systems [ J ]. J Sci Comput,2006,26 (3) : 844 - 863.
  • 7Jiang Erxiong. Algorithm for solving a shifted skew-symmetric lin- ear system [ J ]. Front Math China,2007,2 ( 2 ) : 227 - 242.
  • 8Benzi M,Guo X P. A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations [ J ]. Applied Numerical Mathematics,2011,61 ( 1 ) : 66 -76.
  • 9Bai Z Z, Benzi M, Chen F. On preconditioned MHSS iteration methods forcomplex symmetric linear systems [ J ]. Numer Algo- rithms,2011,56(2) : 297 -317.
  • 10Lin H W,Jin S N,Hu Q Q,et al.Constructing B-spline solids from tetrahedral meshes for isogeometric analysis[OL]. http://www.sciencedirect.com/science/article/pii/S0167839615000369 . 2015

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部