期刊文献+

一类椭变曲线

A Kind of Elliptic Transform Curves
下载PDF
导出
摘要 对圆按一定方向一定比例做压缩或拉伸变换可以得到椭圆。本文提出一类参数方程,通过绘图实验和分析,发现是一种对椭圆进行压拉变换,可得到卵圆和心形线,并获得了这类曲线的面积、质心坐标、转动惯量、旋转卵形体的体积等重要公式。 The ellipse can also be regarded as a figure obtained by compressing or stretching a circle in a cer-tain direction in a certain proportion. In this paper, a kind of parametric equation is presented. Through drawing experiment and analysis, it is a transformation of compression and stretching of ellipse to obtain oval and cardioid. The important formulas of the area, centroid coordinate, mo-ment of inertia and volume of rotating oval ball are calculated.
出处 《应用数学进展》 2023年第11期4679-4685,共7页 Advances in Applied Mathematics
  • 相关文献

参考文献2

二级参考文献9

  • 1Barrowclough O J D. A basis for the implicit representationof planar rational cubic Bézier curves [J]. Computer AidedGeometric Design, 2014, 31(3/4): 148-167.
  • 2Eyal K, Trevor H, Haim W. 3-D curve matching usingsplines [J]. Journal of Robotic Systems, 1991, 8(6):723-743.
  • 3Cohen F S, Huang Z, Yang Z. Invariant matching andidentification of curves using B-splines curverepresentation [J]. IEEE Transactions on ImageProcessing, 1995, 4(1): 1-10.
  • 4Sederberg T W, Chen F L. Implicitization using movingcurves and surfaces [C].Computer Graphics, 29(AnnualConference Series), Proceeding of Siggraph’ 1995. NewYork: ACM Press, 1995: 301-308.
  • 5Sederberg T W, Anderson D C, Goldman R N.Implicitization, inversion, and intersection of planarrational cubic curves [J]. Computer Vision, Graphics,and Image Processing, 1985, 31(1): 89-102.
  • 6Floater M S. Rational cubic implicitization [M]. In:Daehlen M, Lyche T, Schumaker L. (Eds.), MathematicalMethods for Curves and Surfaces. Nashville, TN, US:Vanderbilt University Press, 1995: 1-9.
  • 7Busé L, Ba T L. Matrix-based implicit representations ofrational algebraic curves and applications [J]. ComputerAided Geometric Design, 2010, 27(9): 681-699.
  • 8Tsujiy S, Matsumoto F. Detection of ellipses by amodified Hough transform [J]. IEEE Transactions onComputer, 1978, 27(9): 777-781.
  • 9管贤根,管杰.多焦点圆及其椭圆和卵圆[J].图学学报,2013,34(2):52-64. 被引量:4

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部