期刊文献+

BiCR算法求解Sylvester矩阵方程组的Perhermitian解

The BiCR Algorithm for Solving the Perhermitian Solutions of Sylvester Matrix Equations
下载PDF
导出
摘要 对于给定的矩阵X∈Cn×n,如果SXS=SH,其中S是给定的反射矩阵,即SH=S,S2=I,则称矩阵X为perhermitian矩阵。本文提出一种用于求解Sylvester矩阵方程组的perhermitian解的双共轭残差(BiCR)算法,并且证明了该算法的收敛性。通过选择任意初始perhermitian矩阵,可以在有限步求解出Sylvester矩阵方程组的唯一最小范数perhermitian解。最后,我们给出了一些数值算例来验证该算法的有效性和可行性。 For a given matrix X∈Cn×n , matrix X is said to be perhermitian if SXS=SH , where S is a given re-flection matrix, i.e., SH=S , S2=I . In this paper, we propose the Bi-Conjugate Residual (BiCR) algorithm for solving the perhermitian solutions of Sylvester matrix equations and prove the con-vergence of the algorithm. By choosing any initial perhermitian matrices, the unique mini-mum-norm perhermitian solutions of the Sylvester matrix equations can be solved in finite steps. Finally, we give some numerical examples to verify the validity and feasibility of the algorithm.
出处 《应用数学进展》 2023年第12期4967-4986,共20页 Advances in Applied Mathematics
  • 相关文献

参考文献1

二级参考文献10

  • 1Horn R A,Johnson C R.矩阵分析[M].杨奇译.北京:机械工业出版社,2005.
  • 2Bouhamidi A, Jbilou K. A note on the numerical approximate solutions for generalized Sylvester matrix equations with ap- plications[J]. Applied Mathematics Computation, 2008, 206 (2) : 687-694.
  • 3Jbilou K, Messaoudi A, Sadok H. Global FOM and GMRES algorithms for matrix equations [J]. Applied Numerical Mathematics, 1999, 31(1): 49-63.
  • 4Jbilou K, Riquet A J. Projection methods for large Lyapunov matrix equations[J]. Linear Algebra and Its Applications, 2006, 415(2): 344-358.
  • 5Zhang Jianjun. A note on the iterative solutions of general coupled matrix equation[J]. Applied Mathematics Computa- tion, 2011, 217(22): 9380-9386.
  • 6Zhou Bin, Duan Guangren. On the generalized Sylvester mapping and matrix equations[J]. Systems Control Letters, 2008, 57(3): 200-208.
  • 7Ding Feng , Chen Tongwen. On iterative solutions of general coupled matrix equations[J]. SlAM Journal on Control and Optimization, 2006, 44(6): 2269-2284.
  • 8Beik F P A, Salkuyeh D K. On the global Krylov subspace methods for solving general coupled matrix equations[J]. Computers Mathematics with Applications, 2011, 62 (12) : 4605-4613.
  • 9Jbilou K, Messaudi A, Sadok H. Global FOM and GMRES algorithms for matrix equations [J]. Applied Numerical Mathematics, 1999,31 (1):49-63.
  • 10Kaabi A, Toutounian F, Kerayechian A. Preconditioned Galer kin and minimal residual methods for solving Sylvester equa- tions[J]. Applied Mathematics and Computation, 2006, 181 (2) : 1208-1214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部